NRC Publications Archive Archives des publications du CNRC Synthesis and characterization of mixed ruthenium/platinum μ₄- phosphinidene, phosphorus monoxide, and related clusters Scoles, Ludmila; Yamamoto, John H.; Brissieux, Luc; Sterenberg, Brian T.; Udachin, Konstantin A.; Carty, Arthur J. This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.1021/ic0106423 Inorganic Chemistry, 40, 26, pp. 6731-6736, 2001-11-21 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=aef23551-8d1a-4a77-9b26-45fa612bac39 https://publications-cnrc.canada.ca/fra/voir/objet/?id=aef23551-8d1a-4a77-9b26-45fa612bac39 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. Inorg. Chem. 2001, 40, 6731-6736 6731 Synthesis and Characterization of Mixed Ruthenium/Platinum µ4-Phosphinidene, Phosphorus Monoxide, and Related Clusters Ludmila Scoles,† John H. Yamamoto,† Luc Brissieux,† Brian T. Sterenberg,† Konstantin A. Udachin,† and Arthur J. Carty*,†,‡ Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ont., Canada K1A 0R6, and Department of Chemistry, Ottawa-Carleton Chemistry Institute, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 ReceiVed June 18, 2001 i The mixed-metal cluster complexes [Ru4(CO)12Pt(CO)PPh3(µ4-PR)] [R ) N Pr2 (1),F(3)] were formed by capping 2 the Ru3P face of the nido clusters [Ru4(CO)13(µ3-PR)] with the labile Pt(0) reagent [(η -C2H4)Pt(PPh3)2]. The aminophosphinidene complex 1 undergoes acid hydrolysis to yield the PO complex [Ru4(CO)12Pt(CO)PPh3(µ4- i PO)][H2N Pr2](4). The fluorophosphinidene cluster 3 reacts with ethanol to form the alkoxyphosphinidene complex [Ru4(CO)12Pt(CO)PPh3(µ4-POEt)] (5). Comparison of spectroscopic and structural data for clusters 1, 3, 4, and 5 reveals the remarkable effects of the µ4-phosphinidene and phosphorus monoxide ligands on cluster bonding. i Introduction cleavage in aminophosphinidene µn-PR (R ) N Pr2, NCy2) clusters, to the synthesis of a variety of ruthenium and osmium Our interest in the synthesis of phosphorus monoxide complexes containing µ3- and µ4-PO ligands as well as complexes has been inspired by the fact that free PO has been functionalized fluoro-, hydroxy-, and alkoxyphosphinidenes.6,7 characterized only spectroscopically in matrices and in molecular An attractive approach for the generation of higher nuclearity 1 beams, but cannot be isolated. Free PO is unstable relative to homonuclear or mixed-metal clusters with phosphinidene or the higher phosphorus oxides P4O6 and P4O10. Although the phosphorus monoxide ligands consists of capping the open face 2,3 chemistry of phosphorus monoxide complexes has grown, of a nido cluster with a metal fragment that contributes the there is still much to be learned about the coordination properties appropriate number of skeletal electrons to convert an n + 2 of PO. pair nido system to an n + 1 skeletal pair closo arrangement. Two synthetic methodologies for the preparation of complexes We have previously shown, for example, that treatment of the containing phosphorus monoxide ligands have been described. seven skeletal pair, five vertex nido clusters [Ru4(CO)13(µ3-PR)] { 5 i } i The first PO complex [ η -(C5H Pr4)Ni(µ3-PO) 2W(CO)4], (R ) N Pr2, NCy2), which possess an open Ru3P face, with Ru- 2 reported by Scherer et al., was formed by the direct oxidation (CO)5 leads to the closo six vertex molecules [Ru5(CO)15(µ4- of naked phosphide ligands. A similar methodology has been PR)], effectively adding a zero-electron Ru(CO)2 unit to the 1 used to prepare several other µ3-PO clusters and the first η - polyhedron. This cluster was then hydrolyzed to produce the { } 7a PO complex [(OP)Mo N(R)Ar 3][R) C(CD3)2Me, Ar ) 3,5- first homonuclear cluster bearing a µ4-PO ligand. 4 C6H3Me2]. This synthetic methodology is limited by the We report herein the synthesis and characterization of the difficulty of accessing the appropriate precursor phosphide first series of mixed-metal (Ru4Pt) clusters having µ4-PO, µ4- 10 complexes. PNR2, µ4-POR, and µ4-PF ligands, via the addition of d -PtL2 An alternate and more versatile methodology to access PO fragments to the Ru3P face of nido-[Ru4(CO)13(µ3-PR)] (R ) i clusters was discovered when it was shown that hydrolysis of N Pr2, F), followed by transformations at the phosphinidene i the aminophosphinidene ligand in [Ru4(CO)12(µ3-PN Pr2)] leads ligand. i 5 to the anionic PO cluster [Ru4(CO)12(µ3-PO)][H2N Pr2]. We have since extended this strategy, which involves P-N bond Experimental Section Unless specified otherwise, the reactions were carried out under an † National Research Council of Canada. atmosphere of nitrogen. Hexane, THF, and CH2Cl2 were appropriately ‡ 2 University of Ottawa. dried prior to use. The reagents HBF4‚Et2O 54% solution and [(η - (1) (a) Andrews, L.; Withnall, R. J. Am. Chem. Soc. 1988, 110, 5605. (b) C2H4)Pt(PPh3)2] were purchased from Aldrich and used without further Matthews, H. E.; Feldman, P. A.; Bernath, P. F. Astrophys. J. 1987, i purification. The compounds [Ru4(CO)13(µ3-PN Pr2)] and [Ru4(CO)13- 312, 358. 5 (2) (a) Scherer, O. J.; Braun, J.; Walther, P.; Heckmann, G.; Wolmer- (µ3-PF)] were synthesized by known procedures. sha¨user, G.; Angew. Chem., Int. Ed. Engl. 1991, 30, 852. (b) Scherer, O. J.; Vondung, C.; Wolmersha¨user, G. Angew. Chem., Int. Ed. Engl. (5) (a) Corrigan, J. F.; Doherty, S.; Taylor, N. J.; Carty, A. J. J. Am. Chem. 1997, 36, 1303. Soc. 1994, 116, 9799. (b) Wang, W.; Corrigan, J. F.; Doherty, S.; (3) (a) Foerstner, J.; Olbrich, F.; Butenscho¨n, H. Angew. Chem., Int. Ed. Enright, G. D.; Taylor, N. J.; Carty, A. J. Organometallics 1996, 15, Engl. 1996, 35, 1234. (b) Davies, J. E.; Klunduk, M. C.; Mays, M. J.; 2770. Raithby, P. R.; Shields, G. P.; Tompkin, P. K.; J. Chem. Soc., Dalton (6) (a) Wang, W.; Carty, A. J. New J. Chem. 1997, 21, 773. (b) Wang, Trans. 1997, 715. (c) Scherer, O. J.; Weigel, S.; Wolmersha¨user, G. W.; Enright, G. D.; Carty, A. J. J. Am. Chem. Soc. 1997, 119, 12370. Angew. Chem., Int. Ed. Engl. 1999, 38, 3688. (d) Scherer, O. J.; (7) (a) Yamamoto, J. H.; Udachin, K. A.; Enright, G. D.; Carty, A. J. J. Weigel, S.; Wolmersha¨user, G. Heteroat. Chem. 1999, 10, 622. Chem. Soc. Chem. Commun. 1998, 2259. (b) Yamamoto, J. H.; Scoles, (4) Johnson, M. J. A.; Odom, A. L.; Cummins, C. C. J. Chem. Soc. Chem. L.; Udachin, K. A.; Enright, G. D.; Carty, A. J. J. Organomet. Chem. Commun. 1997, 1523. 2000, 600, 84. 10.1021/ic0106423 CCC: $20.00 © 2001 American Chemical Society Published on Web 11/21/2001 6732 Inorganic Chemistry, Vol. 40, No. 26, 2001 Scoles et al. TLC separations were performed by using silica gel plates (60 A in a mixture of CH2Cl2 (5 mL) and ethanol (10 mL). The solution was F254) (Merck, 0.25 mm). Infrared spectra were recorded on a Bio-Rad heated under gentle reflux for 2 days. The solvent was removed in FTS-40A FTIR spectrometer. The 1H and 31P NMR spectra were vacuo and the solid residue was separated on TLC plates with hexane/ 19 obtained on a Bruker DRX-400 spectrometer and the F NMR spectra CH2Cl2 mixture 80/20. One green band was isolated and determined on a Varian Mercury-V · 200 MHz spectrometer. Elemental analyses to be [Ru4(CO)12Pt(CO)PPh3(µ4-POEt)] (5). The product was crystal- were performed by Guelph Chemical Laboratories, Guelph, Ontario, lized from CH2Cl2/hexane at -28 °C over 3 days. Yield: 7 mg, 70%. -1 Canada. IR (CH2Cl2), ν(CO): 2079m, 2045vs, 2013m, 1995sh, 1970vw cm . i 2 31 {1 } Reaction of [Ru4(CO)13(µ3-PN Pr2)] with [(η -C2H4)Pt(PPh3)2]. P H NMR (CDCl3): δ 460.1 (d, JP-P ) 12 Hz, JP-Pt ) 1228 Hz), i 2 1 [Ru4(CO)13(µ3-PN Pr2)] (73 mg, 0.081 mmol) and [(η -C2H4)Pt(PPh3)2] 34.1 (d, JP-P ) 12 Hz, JP-Pt ) 3159 Hz). H NMR (CDCl3): δ 7.6- (68 mg, 0.091 mmol) were dissolved in 10 mL of THF. The resulting 7.45 (m, 15H), 2.66 (q, 2H, JH-H ) 6.8 Hz, CH2), 0.57 (t, 3H, JH-H ) + + red solution was stirred at room temperature for 24 h, at which point 6.8 Hz, CH3).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages7 Page
-
File Size-