Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases Matthieu Raess To cite this version: Matthieu Raess. Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases. Genomics [q-bio.GN]. Université de Strasbourg, 2017. English. NNT : 2017STRAJ088. tel-03081300 HAL Id: tel-03081300 https://tel.archives-ouvertes.fr/tel-03081300 Submitted on 18 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE (ED 414) Génétique Moléculaire, Génomique, Microbiologie (GMGM) – UMR 7156 & Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 – INSERM U 964 THÈSE présentée par : Matthieu RAESS soutenue le : 13 octobre 2017 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects moléculaires et cellulaires de la biologie Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases. THÈSE dirigée par : Mme FRIANT Sylvie Directrice de recherche, Université de Strasbourg & Mme COWLING Belinda Chargée de recherche, Université de Strasbourg RAPPORTEURS : Mme BOLINO Alessandra Directrice de recherche, Institut San Raffaele de Milan M. BITOUN Marc Chargé de recherche, Institut de Myologie AUTRES MEMBRES DU JURY : M. ECHARD Arnaud Directeur de recherche, Institut Pasteur M. VITALE Nicolas Directeur de recherche, Université de Strasbourg Acknowledgements It is my pleasure to acknowledge the roles of many people who made this PhD research possible. I will start by respectfully thanking the members of the jury Dr. Alessandra Bolino, Dr. Marc Bitoun, Dr. Arnaud Echard and Dr. Nicolas Vitale for accepting to read and evaluate my PhD work. I would like to sincerely thank Dr. Sylvie Friant and Dr. Jocelyn Laporte for welcoming me in their respective teams. Both of you have been a constant and powerful source of advice and motivation. Of course many thanks to Dr. Belinda Cowling for accepting to be my co-director (and my official Aurora specialist) for the last two years, your help and your enthusiasm have been a great support to me. I would like to express my appreciation to the Association Française contre les Myopathies (AFM Téléthon) for financially supporting my thesis project during 3 years. When it comes to my team(s) members, it is difficult to individually express all my gratitude. I will simply thank all of you for your precious help, your fruitful discussions and most importantly your kindness and positive atmosphere. It has always been a pleasure and a privilege to share your scientific and social life. Special thanks go to Bruno Rinaldi, Christine Kretz, Pascal Kessler (except Pascal’s jokes), Hichem Tasfaout and Raphael Schneider for their significant technical assistance. I would also like to thank our collaborators for this work: Dr. Bernard Payrastre and Jean-Marie Xuereb for the yeast lipid dosage and Dr. Norma Romero for sharing precious patient biopsies. I am also grateful to Alessandra Bolino and Marta Guerrero for sharing their mouse tissues. This work would not have been possible without our technical platforms. I especially thank Nadia Messaddeq, Josiane Hergueux and Coralie Spiegelhalter for their help in electron 1 microscopy; Philippe Hammann, Lauriane Kuhn and Johana Chicher (IBMC) for all the work on mass spectrometry; Pascale Koebel and Paola Rossolillo (IGBMC) for virus production; and finally the IGBMC animal facility, cell culture facility and antibody facility. I gratefully thank all members and organizers of the OpenLAB operation. Going in all these high schools through Alsace was an exciting opportunity to practice scientific vulgarization and really confirmed my project of becoming a teacher in biology. Special thanks go to my loving partner Florine, who is a constant support and source of happiness in my life. I would like to finish my acknowledgements by thanking my parents, my brothers Vincent, Christophe and Sébastien, and my sister Anne. They supported me during all my life and made all this possible for me. 2 Table of contents Acknowledgements .................................................................................................................... 1 Table of contents ........................................................................................................................ 3 List of tables ............................................................................................................................... 7 List of figures ............................................................................................................................. 8 Essential abbreviations ............................................................................................................. 10 Part One - Introduction ........................................................................................... 11 I. Setting the scene ............................................................................................................. 12 II. Myotubularin-related diseases ...................................................................................... 12 A. The X-linked centronuclear myopathy ......................................................................... 12 1. The causative gene ................................................................................................... 12 2. Clinical and histological features ............................................................................. 15 3. Animal models ......................................................................................................... 18 B. The Charcot-Marie-Tooth neuropathy Type 4B1 ........................................................ 23 1. The causative gene ................................................................................................... 23 2. Clinical and histological features ............................................................................. 27 3. Animal models ......................................................................................................... 28 III. The myotubularin family ........................................................................................... 29 A. Introduction .................................................................................................................. 29 B. Myotubularins: protein domains and interactions ........................................................ 31 C. Myotubularins: tissue expression ................................................................................. 35 D. Myotubularin: mRNA isoforms ................................................................................... 37 E. Myotubularins: protein structure. ................................................................................. 39 F. Conclusion .................................................................................................................... 42 IV. Phosphoinositides: key lipids in intracellular trafficking ....................................... 43 A. The metabolism of membrane phosphoinositides ........................................................ 43 1. Lipids are the main membrane constituents ............................................................. 43 2. Phosphoinositides are lipid signaling molecules ...................................................... 46 3. Phosphatidylinositol is the precursor of phosphoinositides ..................................... 46 B. The PtdIns3P is essential for endosomal trafficking .................................................... 47 1. PtdIns3P synthesis .................................................................................................... 47 2. PtdIns3P physiological role ..................................................................................... 49 3 C. PtdIns(3,5)P2 is a regulator of endosomal-lysosomal trafficking ................................ 51 1. PtdIns(3,5)P2 synthesis ............................................................................................. 51 2. Physiological role of PtdIns(3,5)P2 .......................................................................... 52 D. PtdIns5P is an underappreciated phosphoinositide ...................................................... 53 1. PtdIns5P synthesis .................................................................................................... 53 2. PtdIns5P physiological role ..................................................................................... 54 E. A word about the other phosphoinositides ................................................................... 55 V. Objectives of this thesis .................................................................................................. 55 Part Two – Results .....................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages232 Page
-
File Size-