Physics 461 / Quantum Mechanics I

Physics 461 / Quantum Mechanics I

Physics 461 / Quantum Mechanics I P.E. Parris Department of Physics University of Missouri-Rolla Rolla, Missouri 65409 January 10, 2005 CONTENTS 1 Introduction 7 1.1WhatisQuantumMechanics?......................... 7 1.1.1 WhatisMechanics?.......................... 7 1.1.2 PostulatesofClassicalMechanics:.................. 8 1.2TheDevelopmentofWaveMechanics..................... 10 1.3TheWaveMechanicsofSchrödinger..................... 13 1.3.1 Postulates of Wave Mechanics for a Single Spinless Particle . 13 1.3.2 Schrödinger’sMechanicsforConservativeSystems......... 16 1.3.3 The Principle of Superposition and Spectral Decomposition . 17 1.3.4 TheFreeParticle............................ 19 1.3.5 Superpositions of Plane Waves and the Fourier Transform . 23 1.4Appendix:TheDeltaFunction........................ 26 2 The Formalism of Quantum Mechanics 31 2.1 Postulate I: SpecificationoftheDynamicalState.............. 31 2.1.1 PropertiesofLinearVectorSpaces.................. 31 2.1.2 Additional Definitions......................... 33 2.1.3 ContinuousBasesandContinuousSets................ 34 2.1.4 InnerProducts............................. 35 2.1.5 ExpansionofaVectoronanOrthonormalBasis.......... 38 2.1.6 Calculation of Inner Products Using an Orthonormal Basis . 39 2.1.7 ThePositionRepresentation..................... 40 2.1.8 TheWavevectorRepresentation.................... 41 2.2PostulateII:ObservablesofQuantumMechanicalSystems......... 43 2.2.1 OperatorsandTheirProperties.................... 43 2.2.2 MultiplicativeOperators........................ 45 2.2.3 DifferentialOperators......................... 47 2.2.4 Ket-BraOperators........................... 48 2.2.5 ProjectionOperators:Thecompletenessrelation.......... 49 2.2.6 MatrixElements............................ 51 2.2.7 Action of Operators on Bras of S∗ .................. 52 2.2.8 HermitianConjugation........................ 52 2.2.9 Hermitian,Anti-Hermitian,andUnitaryOperators......... 54 2.2.10MatrixRepresentationofOperators................. 55 2.2.11CanonicalCommutationRelations.................. 62 2.2.12 Matrix Elements of Unitary Operators (Changing Representation) 63 2.2.13RepresentationIndependentPropertiesofOperators........ 67 2.2.14EigenvaluesandEigenvectors..................... 69 2.2.15EigenpropertiesofHermitianOperators............... 70 2.2.16ObtainingEigenvectorsandEigenvalues............... 71 2.2.17CommonEigenstatesofCommutingObservables.......... 77 4 CONTENTS 2.3 Postulate III: The Measurement of Quantum Mechanical Systems . 80 2.3.1 Sum of Probabilities .......................... 85 2.3.2 MeanValues.............................. 86 2.3.3 StatisticalUncertainty......................... 87 2.3.4 TheUncertaintyPrinciple....................... 88 2.3.5 PreparationofaStateUsingaCSCO................ 90 2.4PostulateIV:Evolution............................ 91 2.4.1 Construction of the Hamiltonian and Other Observables . 93 2.4.2 SomeFeaturesofQuantumMechanicalEvolution.......... 94 2.4.3 EvolutionofMeanValues....................... 96 2.4.4 Eherenfest’sTheorem......................... 97 2.4.5 Evolution of Systems with Time Independent Hamiltonians . 99 2.4.6 TheEvolutionOperator........................ 102 3 The Harmonic Oscillator 105 3.1StatementoftheProblem........................... 105 3.1.1 Algebraic Approach to the Quantum Harmonic Oscillator . 107 3.1.2 Spectrum and Eigenstates of the Number Operator N ....... 110 3.1.3 TheEnergyBasis............................ 113 3.1.4 Action of Various Operators in the Energy Representation . 117 3.1.5 Time Evolution of the Harmonic Oscillator . ........... 121 4 Bound States of a Central Potential 123 4.1GeneralConsiderations............................. 123 4.2HydrogenicAtoms:TheCoulombProblem................. 127 4.3 The 3-D Isotropic Oscillator .......................... 131 5 Approximation Methods for Stationary States 133 5.1TheVariationalMethod............................ 133 5.2PerturbationTheoryforNondegenerateLevels............... 137 5.3PerturbationTheoryforDegenerateStates................. 146 5.3.1 Application: Stark Effect of the n =2Level of Hydrogen . 148 6 Many Particle Systems 151 6.1TheDirectProductofLinearVectorSpaces................. 151 6.1.1 Motion in 3 Dimensions Treated as a Direct Product of Vector Spaces155 6.1.2 TheStateSpaceofSpin-1/2Particles................ 156 6.2TheStateSpaceofManyParticleSystems.................. 156 6.3EvolutionofManyParticleSystems..................... 158 6.4SystemsofIdenticalParticles......................... 160 6.4.1 Construction of the Symmetric and Antisymmetric Subspaces . 162 6.4.2 NumberOperatorsandOccupationNumberStates......... 167 6.4.3 Evolution and Observables of a System of Identical Particles . 170 6.4.4 FockSpaceasaDirectSumofVectorSpaces............ 175 6.4.5 TheFockSpaceofIdenticalBosons................. 177 6.4.6 TheFockSpaceofIdenticalFermions................ 178 6.4.7 Observables of a System of Identical Particles Revisited . 182 6.4.8 FieldOperatorsandSecondQuantization.............. 186 CONTENTS 5 7 Angular Momentum and Rotations 189 7.1OrbitalAngularMomentumofOneorMoreParticles........... 189 7.2RotationofPhysicalSystems......................... 192 7.3RotationsinQuantumMechanics....................... 196 7.4CommutationRelationsforScalarandVectorOperators.......... 198 7.5RelationtoOrbitalAngularMomentum................... 200 7.6 Eigenstates and Eigenvalues of Angular Momentum Operators . 202 7.7OrthonormalizationofAngularMomentumEigenstates.......... 207 7.8OrbitalAngularMomentumRevisited.................... 211 7.9RotationalInvariance............................. 216 7.9.1 IrreducibleInvariantSubspaces.................... 216 7.9.2 RotationalInvarianceofStates.................... 220 7.9.3 RotationalInvarianceofOperators.................. 220 7.10AdditionofAngularMomenta......................... 221 7.11ReducibleandIrreducibleTensorOperators................. 230 7.12TensorCommutationRelations........................ 234 7.13TheWignerEckartTheorem......................... 235 8 Time Dependent Perturbations: Transition Theory 239 8.1GeneralConsiderations............................. 239 8.2PeriodicPerturbations:Fermi’sGoldenRule................ 245 8.3PerturbationsthatTurnOn.......................... 250 8.3.1 Sudden Perturbations ......................... 251 8.3.2 TheAdiabaticTheorem........................ 252 8.4Appendix:Landau-ZenerTransitions..................... 254 8.5 Free Particle Propagator . .......................... 259 8.6 Particle in a time dependent field....................... 260 9 Scattering Theory 263 9.1GeneralConsiderations............................. 263 9.2AnIntegralEquationfortheScatteringEigenfunctions........... 268 9.2.1 EvaluationOfTheGreen’sFunction................. 269 9.3TheBornExpansion.............................. 272 9.4ScatteringAmplitudesandT-Matrices.................... 272 9.5PartialWaveExpansions............................ 276 10 Glossary 281 Fkdswhu 4 LQWURGXFWLRQ 414 Zkdw lv Txdqwxp PhfkdqlfvB 41414 Zkdw lv PhfkdqlfvB 41 Fodvvlfdo Phfkdqlfv +Jdolohr/ Qhzwrq/ Odjudqjh/ Kdplowrq, 51 Uhodwlylvwlf Phfkdqlfv +Hlqvwhlq/ Oruhqw}/ Srlqfduh, 61 Vwdwlvwlfdo Phfkdqlfv +Pd{zhoo/ Erow}pdqq/ Jleev, 71 Txdqwxp Phfkdqlfv +Erku/ Vfkuùglqjhu/ Khlvhqehuj/ Gludf, Phfkdqlfv 0 d vwdwhphqw ri wkh uxohv iru ghvfulelqj wkh hyroxwlrq dqg revhuydwlrq +ru phdvxuhphqw,ri d sduwlfxodu fodvv ri g|qdplfdo v|vwhpv1 G|qdplfdo V|vwhp 0 d vhw ri hohphqwv srvvhvvlqj sk|vlfdo dwwulexwhv/ vrph ri zklfk duh phdvxudeoh dqg vrph ri zklfk pd| fkdqjh dv d ixqfwlrq ri wlph1 Phdvxudeoh Dwwulexwhv duh riwhq uhihuuhg wr dv revhuydeohv1 Wr phdvxuh dq re0 vhuydeoh phdqv wr dvvljq d qxphulfdo ydoxh wr lw wkurxjk vrph vshflhg phdvxuhphqw surfhvv1 Wr vwdwh d jlyhq irup ri phfkdqlfv riwhq hqwdlov wkh vshflfdwlrq ri irxu frpsrqhqwv/ hlwkhu lpsolflwo|/ ru lq wkh irup ri srvwxodwhv uhjduglqj= 41 vshflfdwlrq 0 wkh phdqv e| zklfk dq duelwudu| g|qdplfdo vwdwh ri wkh v|vwhp pd| eh vshflhg +lq vrph vhqvh/ frpsohwho| dqg xqltxho|,1 51 revhuydeohv 0 wkh w|shv ri phdvxuhphqwv +ru revhuydeohv,wkdw fdq eh shuiruphg rq wkh v|vwhp zkhq lw lv lq dq duelwudu| g|qdplfdo vwdwh1 61 phdvxuhphqw 0 wkh srvvleoh rxwfrphv dvvrfldwhg zlwk wkh phdvxuhphqw ri dq revhuydeoh +ru revhuydeohv,zkhq wkh v|vwhp lv lq dq duelwudu| g|qdplfdo vwdwh1 +Lqfoxglqj/ iru h{dpsoh/ zkdw ydoxhv fdq eh rewdlqhg dqg zkdw kdsshqv wr wkh g|qdplfdo vwdwh gxulqj wkh phdvxuhphqw surfhvv1, 71 hyroxwlrq 0 wkh uxohv jryhuqlqj wkh hyroxwlrq ri wkh v|vwhp dv lw sdvvhv iurp rqh g|qdplfdo vwdwh lqwr dqrwkhu1 Lw lv wr eh hpskdvl}hg wkdw wkhvh irxu frpsrqhqwv duh qrw jhqhudoo| vrphwklqj zklfk rqh fdq h{shfw wr ghulyh1 Udwkhu/ wkh| h{lvw dv srvwxodwhv ru d{lrpv ri wkh sduwlfxodu phfkdqlfv zklfk wkh| vhuyh wr ghqh1 Lw lv wkh uroh ri h{shulphqw wr yhuli| ru uhixwh wkh dssolfdelolw| ri d srvwxodwhg v|vwhp ri wkhruhwlfdo phfkdqlfv wr d sduwlfxodu fodvv ri sk|vl0 fdo v|vwhpv1 Zkhq d vx!flhqw ghjuhh ri dssolfdelolw| wr sk|vlfdo v|vwhpv lv h{shulphqwdoo| ghprqvwudwhg wkh fruuhvsrqglqj srvwxodwhv wdnh rq wkh fxowxudo vwdwxv ri sk|vlfdo odzv1 ; Lqwurgxfwlrq 41415 Srvwxodwhv ri Fodvvlfdo Phfkdqlfv= Srvwxodwhv ri Fodvvlfdo Phfkdqlfv iru Frqvhuydwlyh V|vwhpv +Odjudqjh irupdolvp, 41 Wkh lqvwdqwdqhrxv g|qdplfdo vwdwh ri d v|vwhp lv ghwhuplqhg wkurxjk wkh vshflfd0 wlrq ri d vhw ri Q jhqhudol}hg frruglqdwhv dqg wkhlu dvvrfldwhg yhorflwlhv itl+w,> tbl+w,j @ +t>tb,1 51 Dq| ixqfwlrq D+t> tb, ri wkh vhw +t> tb, lv/ lq sulqflsoh/ dq revhuydeoh ri wkh g|qdplfdo v|vwhp1 Wkh ydoxh ri dq| revhuydeoh lv frpsohwho| ghwhuplqhg rqfh wkh

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    284 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us