Nonreflecting Stationary Subsets Of

Nonreflecting Stationary Subsets Of

F U N D AM E NTA nnoindentMATHEMATICAEF U N D AM E NTA 1 65 open parenthesis 2 0 0 closing parenthesis nnoindentNonreflectingMATHEMATICAE stationary subsets of P sub kappa lambda by n centerline f1 65 ( 2 0 0 ) g Yoshihiro A b eF open U N D parenthesis AM E NTA Yokohama closing parenthesis Abstract period We explore the possibility of forcing nonreflecting stationary sets of P sub kappa lambda n centerline f NonreflectingMATHEMATICAE stationary subsets of $ P f nkappa g nlambda $ g period 1 65 ( 2 0 0 ) We also present a P sub kappa lambda generalization of Kanamori quoteright s weakly normal filters comma n centerline fby g Nonreflecting stationary subsets of Pκλ which induces by stationary reflection period Yoshihiro A b e ( Yokohama ) n centerline1 period .. Introductionf Yoshihiro period A b .. e Throughout ( Yokohama .. this ) g .. paper .. kappa .. denotes .. a .. regular .. un hyphen Abstract . We explore the possibility of forcing nonreflecting stationary sets of Pκλ. countable cardinal and .... lambda a cardinal .... greater equal kappa period .... For any such pair .... open We also present a Pκλ generalization of Kanamori ' s weakly normal filters , which induces parenthesisn hspace ∗fn kappaf i l l commag Abstract lambda . closing We explore parenthesis the comma possibility P sub kappa of lambda forcing nonreflecting stationary sets of $ P f nkappa stationaryg nlambda reflection. $ denotes .... the .... set .... open1 . brace Introduction x subset lambda . Throughout : bar x bar less this kappa paper closingκ bracedenotes period .... a For .... x in P sub kappa lambdaregular comma un - .... let .... kappa sub x = bar x cap kappa bar comma nnoindentP sub kappaWe sub also x x = present open brace a s $ subset P f x : n barkappa s barg less nlambda kappa sub$ x closing generalization brace comma and of x-hatwideKanamori ' s weakly normal filters , which induces countable cardinal and λ a cardinal ≥ κ. For any such pair (κ, λ);Pκλ = open brace y in P sub kappa lambda : x subset y closing brace period denotes the set fx ⊂ λ : j x j < κg: For x 2 Pκλ, let κx = j x \ κ j; nnoindentWe say Xstationary subset P sub kappa reflection lambda i . s unbounded if X cap x-hatwide negationslash-equal varnothing for any x in P sub kappa lambda period Let FSF sub kappa comma lambda n hspace ∗fn f i l l g1 . nquad Introduction . nquad Throughout nquad t h i s nquad paper nquad be the filter generated by open braceP x x-hatwide= fs ⊂ x :j :s xj< in κ Pg sub; and kappax = f lambday 2 P λ closing: x ⊂ y braceg: period .. Every filter κx x b κ on$ n Pkappa sub kappa$ lambdanquad idenotes s assumednquad a nquad r e g u l a r nquad un − to be fine comma thatWe say i s commaX ⊂ Pκ extendingλ i s unbounded FSF subif kappaX \ x comma6= ? for lambda any x 2 periodPκλ. Let .. IfF F SF i sκ,λ a filterbe the comma F nnoindent countable cardinal and n h f i l l $ nlambdab $ a c a r d i n a l n h f i l l $ ngeq nkappa to the power of plusfilter denotes generated the set by fxb : x 2 Pκλg: Every filter on Pκλ i s assumed to be fine , that i s . $ n h f i l l For any such pair n h f i l l $ ( +nkappa , nlambda ),P f nkappa g open brace X subset, extending P subF SFkappaκ,λ: lambdaIf F i : sP a filter sub kappa;F denotes lambda the minus set X element-negationslash F closing bracenlambda period$ We say X subset P sub kappa lambda i s c los ed if union of sub alpha less delta x sub alpha in X for any subsetnnoindent hyphendenotes increasingn chainh f i l l thefXn⊂hP f iκ lλ l: Psκ eλ t −nXelementh f i l l $− nfnegationslashFx nsubsetg: nlambda : nmidangbracketleftx nmid x sub< alphan barkappa alpha lessng delta. right $ n angbracketh f i l l For in Xn h with f i l l delta$ less x kappan in semicolonP f n Xkappa i s a g We say X ⊂ P λ i s c los ed if S x 2 X for any ⊂ − increasing chain cnlambda lub if it is closed, $ andn h unbounded f i l l l e t periodn h f i lκ .... l We$ nkappa f α<δx gα = nmid x ncap nkappa nmid hx j α < δi in X with δ < κ; X i s a c lub if it is closed and unbounded . We , $say S subset P subα kappa lambda is stationary if S cap X negationslash-equal varnothing for any club X period say S ⊂ P λ is stationary if S \ X 6= for any club X: Let CF denote the club .. Let CF sub kappa commaκ lambda denote ? κ,λ filter on P λ generated by the club subsets of P λ. n beginthe clubf a l filteri g n ∗g on P sub kappaκ lambda generated by the club subsetsκ of P sub kappa lambda period All the notions defined above for P λ can b e naturally translated into P Allf the nkappa notions definedf x gg abovex for = P subnf kappas lambdansubset can b e naturallyxκ : translatednmid intos nmid < nkappa f x g ng , and P nwidehatx if κ i sf regularxg = uncountablenf y . Forn in instanceP ;Xf n⊂kappaP x ig s unbounded nlambda if for: any x nsubset P sub kappa subκx x x ifx kappa sub x i s regular uncountable period .. Forκx instance comma X subset P sub y ng . y 2 P x there is z 2 X such that y ⊂ z; and F SF denotes the kappa sub x x i s unboundedκx if κx;x nendf a l i g n ∗g filter on P x generated by fs \ P x : s 2 P xg which i s a κ − complete filter on for any y in P sub kappa subκx x x there is z inb X suchκx that y subsetκx z comma andx FSF sub kappa sub x comma P x: x denotes the κx In the next section for certain large T ⊂ P κ+ we force a stationary set Wefilter say on $ P X sub kappansubset sub x xP generatedf nkappa by openg brace nlambda s-hatwide$ capi s P unbounded subκ kappa sub if x x $X : s in Pn subcap kappanwidehatfxg nnot= n varnothingS ⊂ P κ+ $such for that anyS \ P $ xx i sn nonstationaryin P f for nkappa any x 2gT: nlambda . $ Let $ FSF f nkappa sub x x closing brace whichκ i s a kappa sub xκx hyphen complete As the counterpart , in the third section , we present a generalization of w line − e , filternlambda on P subg$ kappa sub x x period akly normal filters on regular cardinals due to Kanamori and show that the existence beIn the the next filter section generated for certain large by T $ subsetnf P n subwidehat kappaf kappaxg to: the x powern in of plusP we forcef nkappa a stationaryg nlambda set of such filters gives the reflection of stationary set s of P λ. ng S subset. $ Pn subquad kappaEvery kappa filter to the power on $ of P plusf such nkappa that Sg cap nlambda P subκ kappa$ subi s x assumed x i s nonstationary for 2000 Mathematics Subject Classification : Primary 3 E 35 , 3 E 55 . anyto x be in T fine period , that i s , extending $ FSF f nkappa , nlambda g . $ nquad I f Research partially supported by \ Grant - in - Aid for Scientific Research ( C ) , The Min $F$As the isafilter counterpart comma $, in the F^ thirdf section+ g$ comma denotes we present the set a generalization of - istry of Education , Science , Sports and Culture of Japan 9640299 " . w line-e akly normal filters on regular cardinals due to Kanamori and show that n beginthe existencef a l i g n ∗g of such filters gives the reflection of stationary set s of P sub kappa lambda period [55] nf2000X Mathematicsnsubset SubjectP Classificationf nkappa g : Primary nlambda 3 E 35:P comma 3f E n 55kappa periodg nlambda − X element−negationslash F Researchng . partially supported by quotedblleft Grant hyphen in hyphen Aid for Scientific Research open paren- thesisnendf Ca lclosing i g n ∗g parenthesis comma The Min hyphen istry of Education comma Science comma Sports and Culture of Japan 9640299 quotedblright period n hspaceopen square∗fn f i bracket l l gWe 5 say 5 closing $ X squarensubset bracket P f nkappa g nlambda $ isclosedif $ nbigcup f nalpha < n delta g x f nalpha g n in X $ f o r any $ nsubset − $ increasing chain nnoindent $ n langle x f nalpha g nmid nalpha < n delta nrangle $ in $ X $ with $ n delta < nkappa ; X$ i s a c lub if it is closed and unbounded . n h f i l l We nnoindent say $ S nsubset P f nkappa g nlambda $ is stationary if $ S ncap X nnot= n varnothing $ for any club $X . $ nquad Let $ CF f nkappa , nlambda g$ denote the club filter on $ P f nkappa g nlambda $ generated by the club subsets of $ P f nkappa g nlambda . $ n hspace ∗fn f i l l g All the notions defined above for $ P f nkappa g nlambda $ can b e naturally translated into nnoindent $ P f nkappa f x gg x $ i f $ nkappa f x g$ i s regular uncountable . nquad For instance $ , X nsubset P f nkappa f x gg x $ i s unbounded if f o r any $ y n in P f nkappa f x gg x$ there is $z n in X $ such that $ y nsubset z , $ and $ FSF f nkappa f x g , x g$ denotes the nnoindent f i l t e r on $ P f nkappa f x gg x $ generated by $ nf nwidehatf s g ncap P f nkappa f x gg x : s n in P f nkappa f x gg x ng $ which i s a $ nkappa f x g − $ complete f i l t e r on $ P f nkappa f x gg x .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us