MAC 2312 Calculus II Sanchez

MAC 2312 Calculus II Sanchez

<p>MAP 2302 Differential Equations Sanchez Summary-Power Series Solutions</p><p>Power Series: a series of the form  n 2 3 n an(x  a)  a0  a1(x  a)  a2(x  a)  a3(x  a)    an (x  a)     n0 is called a power series centered at a. The number “a” is called the center of the series.</p><p>Theorem: for any power series, exactly one of the following is true: a) the series converges only for x=a b) the series converges absolutely for all x c) the series converges absolutely for all x in some finite open interval (a-r, a+r), and diverges if x<a-r or x>a+r. At the points x=a-r and x=a+r the series may converge absolutely, converge conditionally, or diverge, depending on the particular series. r is called the radius of convergence of the series. If the series converges only for x=a, r=0. If the series converges for all x, then r  </p><p>Absolute convergence. Within the interval of convergence a power series converges absolutely.  n In other words, for a r  x  a  r,  an x  a converges. n0</p><p>Definition of Analytic functions at a point. A function f is analytic at a point x=a if it can be represented by a power series in x-a with a positive radius of convergence. Example. The following functions are analytic :sin x, cos x, ex , ln(x  1)</p><p>Definition: the set of values of x for which a power series converges is called the interval of convergence.</p><p>How to find the interval of convergence and the radius of convergence of a power series a Step 1. Solve the inequality lim n1 1 for x. n an Step 2. Test the end point of the interval for convergence</p><p>Techniques for finding Maclaurin and Taylor series for functions: 1. Taylor’s theorem 2. Substitution in a known series 3. Differentiation of a known series does not change the radius of convergence, except at the end-points. 4. Integration of a known series does not change the radius of convergence, except at the end- points. 5. Long division of series. 6. Multiplication of series. 7. The binomial theorem expansion. 8. Synthetic division. </p><p>-1- Problem 1. Find the radius of convergence and the interval of convergence of the following power series.  xn a)  n1 n xn1 n1 a n  1 nx nx n lim n1  lim  lim  lim  lim x  x  1 1 x  1 n an n xn n n  1xn n n  1 n n  1 n   1n at x  1,  converges by alternating series test n1 n  1 at x  1,  diverges by p  series test, p  1/ 2  1 n1 n The int erval of convergence is  1 x  1, lenght  2 and radius  1</p><p>Problem 2. Find the radius of convergence and the interval of convergence of the following  1n1xn power series:  3 n1 n</p><p> xn1 a (n 1)3 n3xn1 n3 lim n1  lim  lim  lim x  x 1 1 x 1 n an n xn n (n  1)3 xn n (n 1)3 n3  1n1(1)n  1 at x  1,  converges absolutely by p  series, p  3,therefore it converges  3  3 n1 n n1 n  1n1 at x 1, converges, because it converges absolutely  3 n1 n The int erval of convergence is 1 x 1, lenght  2 and radius 1</p><p>Problem 3. Find the radius of convergence and the interval of convergence of the following  xn power series:  n! n1 xn1 a (n  1)! n!xn1 n! 1 lim n1  lim  lim  lim x  lim x  0  1 for all x n an n xn n (n  1)!xn n (n  1)n! n n  1 n!  The int erval of convergence is    x   lenght   and radius  </p><p>-2- Problem 4. Find the radius of convergence and the interval of convergence of the following power series.  a)  n3(x  5)n n1 3 a (n 1)3 (x  5)n1  n 1 lim n1  lim  lim   x  5  x  5 1 1 x  5 1 4  x  6 n an n (n)3 (x  5)n n n   at x  4,  n3(1)2 diverges by n  th term test n1  at x  5,  n3 diverges by n  nth term test n1 The int erval of convergence is 4  x  6, lenght  2 and radius 1</p><p>Problem 5. Find the radius of convergence and the interval of convergence of the following  (3x  2)n power series:  n n1 n  3 (3x  2)n1 a (n 1)  3n1  n  3n (3x  2)n1   n  (3x  2)  1 lim n1  lim  lim    lim    3x  2 1 a n  n1 n   n  1  3  3 n n n (3x  2) n n  1 3 (3x  2)  n    (n)  3n 1 5  3x  2  3  3  3x  2  3  1 3x  5    x  3 3 1  (3x  2)n  (3)n  (1)n at x   ,   converges by alternating series test 3  n  n  (n) n1 (n)  3 n1(n)  3 n1 5  (3x  2)n  (3)n  1 at x  ,   divergess by p  series test, p 1 3  n  n  (n) n1 (n)  3 n1(n)  3 n1 1 1 The int erval of convergence is   x   , lenght  2 and radius 1 3 3</p><p>Theorem: Taylor’s series expansion. If a function f has a power-series expansion in powers of x-a and all derivatives of f exist in some interval containing a and if term-by-term differentiation is valid, then  ( n ) f ( a ) n f ( x )   ( x  a ) for all x in the interval. n  0 n ! The series is called the Taylor’s series for f about a. A Taylor’s series expansion about a=0 is called a Maclaurin’s series expansion.</p><p>-3- n ( k ) f ( a ) k Definition: the polynomial P n ( x )   ( x  a ) is called the Taylor polynomial of k  0 k ! degree n for f(x) about x=a. If a=0, it is called the Maclaurin polynomial</p><p>Some important Maclaurin Series Interval of convergence -1<x<1 or (-1, 1) 1   xn 1  x  x2  x3  ... 1  x  n (,)  xn x x2 x3 e x  1     ...  n! 1! 2! 3! n (,)  x2n1 x3 x5 x7 sin x  (1)n  x     ...  2n  1! 3! 5! 7! n0 (,)  x2n x2 x4 x6 cos x  (1)n 1    ...  2n! 2! 4! 6! n0  x2 x3 x5 (-1, 1] ln(1  x)  (1)n1 xn  x     ...  2 3 5 n1  x2n1 x3 x5 x7 [-1, 1] tan 1 x  1n  x     ...  2n 1 3 5 7 n0</p><p>Theorem : eix  cos x  i sin x where i  1  xn x x2 x3 ix i2 x2 i3x3 i4 x4 i5x5 i6 x6 Pr oof : e x  1     ...  eix 1      ...  n! 1! 2! 3! 1! 2! 3! 4! 5! 6! n0 ix  x2  ix3 x4 ix5 1x6  eix 1       1! 2! 3! 4! 5! 6! x2 x4 x6  x x3 x5   eix 1     ...  i    ...  eix  cos x  i sin x 2! 4! 6! 1! 3! 5!   </p><p>Theorem- Euler’s formula: ei  1 Proof: eix  cos x  i sin x  ei  cos  i sin  ei  1</p><p>-4- eix  eix eix  eix e x  ex e x  ex Theorem: sin x  and sin x  Note :sinh x  and sin x  2i 2 2 2  eix  cos x  i sin x  eix  cos x  i sin x  adding  2cos x  eix  eix     ix  ix  ix ix e  cos x  i sin x e  cos x  i sin x subtracting  2i sin x  e  e  eix  eix cos x   2   eix  eix sin x   2i</p><p>Problem 6. Use power series to solve the IVP DE y  xy - 2y  0, y(0)  1, y(0)  0  n 2 3 Let y   a n x  a0  a1x  a2x  a3x  ... n0   Nn1   n1 n1 N n y   annx   annx   aN1N  1x   a n 1(n  1)x n0 n1 N0 n0   Nn 2  n 2 n 2 N y   ann(n  1)x   ann(n  1)x   aN 2 N  2(N  1)x n1 n 2 N0  n   an 2 n  2(n  1)x n0    n n1 n y  xy - 2y  0   an 2 n  2(n  1)x  x  annx  2  a n x  0 n0 n1 n0    n n n   an 2 n  2(n  1)x   annx  2  a n x  0 n0 n0 n0</p><p> n   an 2 n  2(n  1)  nan  2an x n0</p><p> n   an 2 n  2(n  3)  (n  2)an x  0 n0  an 2 n  2(n  1)  (n  2)an  0 n  2  a   a n 2 (n  2)(n  1) n but a0  1, a1  0 0  2  For n  0, a2   a0  1(1)  1 (0  2)(0  1) 1  2 2  2  n  1 a3   a1  0; n  2  a4   a2  0 (1  2)(1  1) (2  2)(2  1)  an  0 for n  3 2 3 2 Therefore : y  a0  a1x  a2x  a3x  ...  1 x</p><p>-5- Problem 7. Solve the IVP 1- x2 y  2xy  2y  0, y(0)  0, y(0)  1  n 2 3 Let y   a n x  a0  a1x  a2x  a3x  ... n0   Nn1   n1 n1 N n y   annx   annx   aN1N  1x   a n 1(n  1)x n0 n1 N0 n0</p><p>  Nn 2  n 2 n 2 N y   ann(n  1)x   ann(n  1)x   aN 2 N  2(N  1)x n0 n 2 N0  n   an 2 n  2(n  1)x n0 1- x2 y  2xy  2y  0  y  x2y  2xy  2y  0     n 2 n 2 n1 n   an 2 n  2(n  1)x  x  ann(n  1)x  2x  annx  2  a n x  0 n0 n0 n0 n0</p><p>    n n n n   an 2 n  2(n  1)x   ann(n  1)x  2  annx  2  a n x  0 n0 n0 n0 n0</p><p> n   an 2 n  2(n  1)  ann(n  1)  2ann  2an x  0 n0  an 2 n  2(n  1)  ann(n  1)  2ann  2an  0 n(n  1)  2n  2 n2  n  2 (n  2)(n  1)  an 2  an  an 2  an  an 2  an (n  2)(n  1) (n  2)(n  1) (n  2)(n  1)</p><p> n  1  an 2  an n  1 0  1 1 1 2  1 y(0)  0, y(0)  1 a  0 and a  1, a  a  0, a  a  0,a  a  0 0 1 2 0  1 0 3 1 1 1 4 2  1 2</p><p>Therefore an  0 for n  2 2 3 Solution : y  a0  a1x  a2x  a3x  ...  0  1x  0  0  ... y  x</p><p>-6- Problem 8. Solve the Hermite DE y - 2xy  2y  0, y(0)  0 and y(0)  2  n 2 3 Let y   a nx  a0  a1x  a2x  a3x  ... n 0</p><p>  Nn1   n1 n1 N n y   annx   annx   aN1N  1x   a n 1(n  1)x n 0 n1 N 0 n 0</p><p>  Nn 2  n 2 n 2 N y   ann(n  1)x   ann(n  1)x   aN 2 N  2(N  1)x n 0 n 2 N 0</p><p> n   an 2 n  2(n  1)x n0 y - 2xy  2y  0    n n1 n   an 2 n  2(n  1)x  2x  annx  2  a nx  0 n0 n0 n 0</p><p>   n n n   an 2 n  2(n  1)x  2  annx  2  a nx  0 n0 n 0 n 0</p><p> n   an 2 n  2(n  1)  2nan  2an x  0 n0</p><p> an 2 n  2(n  1)  2nan  2an  0 2n  2 2n  1  a  a  a  a n 2 n  2(n  1) n n 2 n  2(n  1) n</p><p>2(0  1) y(0)  0 and y(0)  2  a  0, a  2, a  a  0 0 1 2 (0  2)(0  1) 0</p><p>2(1  1) 2(2  1) a  a  0, a  a  0 3 (1  2)(1  1) 1 4 (2  2)(2  1) 2 2 3 Answer : y  a0  a1x  a2x  a3x  ...  0  2x  0  0  0  ... y  2x</p><p>-7- Problem 9. Ue Power series to find the IVP solution of y  2(x  2)y  4y  0, y(2)  1, y(2)  0  n 2 3 Let y   a n x  2  a0  a1x  2 a2 x  2  a3 x  2  . . . n0</p><p>  Nn1   n1 n1 N n y   annx  2   annx  2   aN1N  1x  2   a n1(n 1)x  2 n0 n1 N0 n0</p><p>  Nn2  n2 n2 N y   ann(n 1)x  2   ann(n 1)x  2   aN2 N  2(N 1)x  2 n0 n2 N0</p><p> n   an2 n  2(n  1)x  2 n0 y  2(x  2)y  4y  0     n n1 n   an2 n  2(n 1)x  2  2(x  2)  annx  2  4  a n x  2  0 n0 n0 n0</p><p>   n n n   an2 n  2(n 1)x  2  2  annx  2  4  a n x  2  0 n0 n0 n0</p><p> n   an2 n  2(n  1)  2nan  4an (x  2)  0 n0  an2 n  2(n  1)  2nan  4an  0 2n  4 2n  2  an2  an  an2  an (n  2)(n 1) (n  2)(n  1) y(2)  1, y(2)  0  a0  1, a1  0 20  2 21 2 n  0  a2  a0  2(1)  2; n  1  a3  a1  0 (0  2)(0 1) (1 2)(1 1) 22  2 n  2  a4  a2  0 (2  2)(2 1)  an  0 for n  3 2 3 y  a0  a1x  2 a2 x  2  a3 x  2  . . .  y  1 0(x  2)  2(x  2)2  y  1 2x2  8x  8  y  2x2  8x  7</p><p>-8- Problem 7. In problem 6 use the reduction of order technique to find the general solution of y  xy - 2y  0 Solution : 2 y1  1  x is a particular solution of the differential equation. 2 2 2 2 y  vy1  v(1  x )  v  x v  y  v  2xv  x v and y  v  2xv  2v  2xv  x v  x2v  v  2v  4xv y  xy - 2y  0  x2v  v  2v  4xv  x(v  2xv  x2v)  2v  x2v  vx2  1 v(x3  5x)  v(0)  1  x2 v  x3  5xv  0 dw x3  5x w  v  1  x2 w  x3  5xw  0   dx  0 w x2  1 2 dw  4x  x 2   x  dx  0  ln w   2ln(x  1)  c w  x2  1 2 x 2 x 2  2   2 2  x 2 2 Ce 2  lnwx  1     c  wx  1  Ce 2  w  2 2   x2  1 x 2  x 2      y Ce 2 2 Ce 2  v    dx  y  (1  x )  dx 1 x2 2 2  2 2  x  1  x  1     x 2    2  2 2  Ce  The general solution is y  c11  x  c2 (1  x ) dx  2 2   x  1   </p><p>-9-</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us