<p>MAP 2302 Differential Equations Sanchez Summary-Power Series Solutions</p><p>Power Series: a series of the form n 2 3 n an(x a) a0 a1(x a) a2(x a) a3(x a) an (x a) n0 is called a power series centered at a. The number “a” is called the center of the series.</p><p>Theorem: for any power series, exactly one of the following is true: a) the series converges only for x=a b) the series converges absolutely for all x c) the series converges absolutely for all x in some finite open interval (a-r, a+r), and diverges if x<a-r or x>a+r. At the points x=a-r and x=a+r the series may converge absolutely, converge conditionally, or diverge, depending on the particular series. r is called the radius of convergence of the series. If the series converges only for x=a, r=0. If the series converges for all x, then r </p><p>Absolute convergence. Within the interval of convergence a power series converges absolutely. n In other words, for a r x a r, an x a converges. n0</p><p>Definition of Analytic functions at a point. A function f is analytic at a point x=a if it can be represented by a power series in x-a with a positive radius of convergence. Example. The following functions are analytic :sin x, cos x, ex , ln(x 1)</p><p>Definition: the set of values of x for which a power series converges is called the interval of convergence.</p><p>How to find the interval of convergence and the radius of convergence of a power series a Step 1. Solve the inequality lim n1 1 for x. n an Step 2. Test the end point of the interval for convergence</p><p>Techniques for finding Maclaurin and Taylor series for functions: 1. Taylor’s theorem 2. Substitution in a known series 3. Differentiation of a known series does not change the radius of convergence, except at the end-points. 4. Integration of a known series does not change the radius of convergence, except at the end- points. 5. Long division of series. 6. Multiplication of series. 7. The binomial theorem expansion. 8. Synthetic division. </p><p>-1- Problem 1. Find the radius of convergence and the interval of convergence of the following power series. xn a) n1 n xn1 n1 a n 1 nx nx n lim n1 lim lim lim lim x x 1 1 x 1 n an n xn n n 1xn n n 1 n n 1 n 1n at x 1, converges by alternating series test n1 n 1 at x 1, diverges by p series test, p 1/ 2 1 n1 n The int erval of convergence is 1 x 1, lenght 2 and radius 1</p><p>Problem 2. Find the radius of convergence and the interval of convergence of the following 1n1xn power series: 3 n1 n</p><p> xn1 a (n 1)3 n3xn1 n3 lim n1 lim lim lim x x 1 1 x 1 n an n xn n (n 1)3 xn n (n 1)3 n3 1n1(1)n 1 at x 1, converges absolutely by p series, p 3,therefore it converges 3 3 n1 n n1 n 1n1 at x 1, converges, because it converges absolutely 3 n1 n The int erval of convergence is 1 x 1, lenght 2 and radius 1</p><p>Problem 3. Find the radius of convergence and the interval of convergence of the following xn power series: n! n1 xn1 a (n 1)! n!xn1 n! 1 lim n1 lim lim lim x lim x 0 1 for all x n an n xn n (n 1)!xn n (n 1)n! n n 1 n! The int erval of convergence is x lenght and radius </p><p>-2- Problem 4. Find the radius of convergence and the interval of convergence of the following power series. a) n3(x 5)n n1 3 a (n 1)3 (x 5)n1 n 1 lim n1 lim lim x 5 x 5 1 1 x 5 1 4 x 6 n an n (n)3 (x 5)n n n at x 4, n3(1)2 diverges by n th term test n1 at x 5, n3 diverges by n nth term test n1 The int erval of convergence is 4 x 6, lenght 2 and radius 1</p><p>Problem 5. Find the radius of convergence and the interval of convergence of the following (3x 2)n power series: n n1 n 3 (3x 2)n1 a (n 1) 3n1 n 3n (3x 2)n1 n (3x 2) 1 lim n1 lim lim lim 3x 2 1 a n n1 n n 1 3 3 n n n (3x 2) n n 1 3 (3x 2) n (n) 3n 1 5 3x 2 3 3 3x 2 3 1 3x 5 x 3 3 1 (3x 2)n (3)n (1)n at x , converges by alternating series test 3 n n (n) n1 (n) 3 n1(n) 3 n1 5 (3x 2)n (3)n 1 at x , divergess by p series test, p 1 3 n n (n) n1 (n) 3 n1(n) 3 n1 1 1 The int erval of convergence is x , lenght 2 and radius 1 3 3</p><p>Theorem: Taylor’s series expansion. If a function f has a power-series expansion in powers of x-a and all derivatives of f exist in some interval containing a and if term-by-term differentiation is valid, then ( n ) f ( a ) n f ( x ) ( x a ) for all x in the interval. n 0 n ! The series is called the Taylor’s series for f about a. A Taylor’s series expansion about a=0 is called a Maclaurin’s series expansion.</p><p>-3- n ( k ) f ( a ) k Definition: the polynomial P n ( x ) ( x a ) is called the Taylor polynomial of k 0 k ! degree n for f(x) about x=a. If a=0, it is called the Maclaurin polynomial</p><p>Some important Maclaurin Series Interval of convergence -1<x<1 or (-1, 1) 1 xn 1 x x2 x3 ... 1 x n (,) xn x x2 x3 e x 1 ... n! 1! 2! 3! n (,) x2n1 x3 x5 x7 sin x (1)n x ... 2n 1! 3! 5! 7! n0 (,) x2n x2 x4 x6 cos x (1)n 1 ... 2n! 2! 4! 6! n0 x2 x3 x5 (-1, 1] ln(1 x) (1)n1 xn x ... 2 3 5 n1 x2n1 x3 x5 x7 [-1, 1] tan 1 x 1n x ... 2n 1 3 5 7 n0</p><p>Theorem : eix cos x i sin x where i 1 xn x x2 x3 ix i2 x2 i3x3 i4 x4 i5x5 i6 x6 Pr oof : e x 1 ... eix 1 ... n! 1! 2! 3! 1! 2! 3! 4! 5! 6! n0 ix x2 ix3 x4 ix5 1x6 eix 1 1! 2! 3! 4! 5! 6! x2 x4 x6 x x3 x5 eix 1 ... i ... eix cos x i sin x 2! 4! 6! 1! 3! 5! </p><p>Theorem- Euler’s formula: ei 1 Proof: eix cos x i sin x ei cos i sin ei 1</p><p>-4- eix eix eix eix e x ex e x ex Theorem: sin x and sin x Note :sinh x and sin x 2i 2 2 2 eix cos x i sin x eix cos x i sin x adding 2cos x eix eix ix ix ix ix e cos x i sin x e cos x i sin x subtracting 2i sin x e e eix eix cos x 2 eix eix sin x 2i</p><p>Problem 6. Use power series to solve the IVP DE y xy - 2y 0, y(0) 1, y(0) 0 n 2 3 Let y a n x a0 a1x a2x a3x ... n0 Nn1 n1 n1 N n y annx annx aN1N 1x a n 1(n 1)x n0 n1 N0 n0 Nn 2 n 2 n 2 N y ann(n 1)x ann(n 1)x aN 2 N 2(N 1)x n1 n 2 N0 n an 2 n 2(n 1)x n0 n n1 n y xy - 2y 0 an 2 n 2(n 1)x x annx 2 a n x 0 n0 n1 n0 n n n an 2 n 2(n 1)x annx 2 a n x 0 n0 n0 n0</p><p> n an 2 n 2(n 1) nan 2an x n0</p><p> n an 2 n 2(n 3) (n 2)an x 0 n0 an 2 n 2(n 1) (n 2)an 0 n 2 a a n 2 (n 2)(n 1) n but a0 1, a1 0 0 2 For n 0, a2 a0 1(1) 1 (0 2)(0 1) 1 2 2 2 n 1 a3 a1 0; n 2 a4 a2 0 (1 2)(1 1) (2 2)(2 1) an 0 for n 3 2 3 2 Therefore : y a0 a1x a2x a3x ... 1 x</p><p>-5- Problem 7. Solve the IVP 1- x2 y 2xy 2y 0, y(0) 0, y(0) 1 n 2 3 Let y a n x a0 a1x a2x a3x ... n0 Nn1 n1 n1 N n y annx annx aN1N 1x a n 1(n 1)x n0 n1 N0 n0</p><p> Nn 2 n 2 n 2 N y ann(n 1)x ann(n 1)x aN 2 N 2(N 1)x n0 n 2 N0 n an 2 n 2(n 1)x n0 1- x2 y 2xy 2y 0 y x2y 2xy 2y 0 n 2 n 2 n1 n an 2 n 2(n 1)x x ann(n 1)x 2x annx 2 a n x 0 n0 n0 n0 n0</p><p> n n n n an 2 n 2(n 1)x ann(n 1)x 2 annx 2 a n x 0 n0 n0 n0 n0</p><p> n an 2 n 2(n 1) ann(n 1) 2ann 2an x 0 n0 an 2 n 2(n 1) ann(n 1) 2ann 2an 0 n(n 1) 2n 2 n2 n 2 (n 2)(n 1) an 2 an an 2 an an 2 an (n 2)(n 1) (n 2)(n 1) (n 2)(n 1)</p><p> n 1 an 2 an n 1 0 1 1 1 2 1 y(0) 0, y(0) 1 a 0 and a 1, a a 0, a a 0,a a 0 0 1 2 0 1 0 3 1 1 1 4 2 1 2</p><p>Therefore an 0 for n 2 2 3 Solution : y a0 a1x a2x a3x ... 0 1x 0 0 ... y x</p><p>-6- Problem 8. Solve the Hermite DE y - 2xy 2y 0, y(0) 0 and y(0) 2 n 2 3 Let y a nx a0 a1x a2x a3x ... n 0</p><p> Nn1 n1 n1 N n y annx annx aN1N 1x a n 1(n 1)x n 0 n1 N 0 n 0</p><p> Nn 2 n 2 n 2 N y ann(n 1)x ann(n 1)x aN 2 N 2(N 1)x n 0 n 2 N 0</p><p> n an 2 n 2(n 1)x n0 y - 2xy 2y 0 n n1 n an 2 n 2(n 1)x 2x annx 2 a nx 0 n0 n0 n 0</p><p> n n n an 2 n 2(n 1)x 2 annx 2 a nx 0 n0 n 0 n 0</p><p> n an 2 n 2(n 1) 2nan 2an x 0 n0</p><p> an 2 n 2(n 1) 2nan 2an 0 2n 2 2n 1 a a a a n 2 n 2(n 1) n n 2 n 2(n 1) n</p><p>2(0 1) y(0) 0 and y(0) 2 a 0, a 2, a a 0 0 1 2 (0 2)(0 1) 0</p><p>2(1 1) 2(2 1) a a 0, a a 0 3 (1 2)(1 1) 1 4 (2 2)(2 1) 2 2 3 Answer : y a0 a1x a2x a3x ... 0 2x 0 0 0 ... y 2x</p><p>-7- Problem 9. Ue Power series to find the IVP solution of y 2(x 2)y 4y 0, y(2) 1, y(2) 0 n 2 3 Let y a n x 2 a0 a1x 2 a2 x 2 a3 x 2 . . . n0</p><p> Nn1 n1 n1 N n y annx 2 annx 2 aN1N 1x 2 a n1(n 1)x 2 n0 n1 N0 n0</p><p> Nn2 n2 n2 N y ann(n 1)x 2 ann(n 1)x 2 aN2 N 2(N 1)x 2 n0 n2 N0</p><p> n an2 n 2(n 1)x 2 n0 y 2(x 2)y 4y 0 n n1 n an2 n 2(n 1)x 2 2(x 2) annx 2 4 a n x 2 0 n0 n0 n0</p><p> n n n an2 n 2(n 1)x 2 2 annx 2 4 a n x 2 0 n0 n0 n0</p><p> n an2 n 2(n 1) 2nan 4an (x 2) 0 n0 an2 n 2(n 1) 2nan 4an 0 2n 4 2n 2 an2 an an2 an (n 2)(n 1) (n 2)(n 1) y(2) 1, y(2) 0 a0 1, a1 0 20 2 21 2 n 0 a2 a0 2(1) 2; n 1 a3 a1 0 (0 2)(0 1) (1 2)(1 1) 22 2 n 2 a4 a2 0 (2 2)(2 1) an 0 for n 3 2 3 y a0 a1x 2 a2 x 2 a3 x 2 . . . y 1 0(x 2) 2(x 2)2 y 1 2x2 8x 8 y 2x2 8x 7</p><p>-8- Problem 7. In problem 6 use the reduction of order technique to find the general solution of y xy - 2y 0 Solution : 2 y1 1 x is a particular solution of the differential equation. 2 2 2 2 y vy1 v(1 x ) v x v y v 2xv x v and y v 2xv 2v 2xv x v x2v v 2v 4xv y xy - 2y 0 x2v v 2v 4xv x(v 2xv x2v) 2v x2v vx2 1 v(x3 5x) v(0) 1 x2 v x3 5xv 0 dw x3 5x w v 1 x2 w x3 5xw 0 dx 0 w x2 1 2 dw 4x x 2 x dx 0 ln w 2ln(x 1) c w x2 1 2 x 2 x 2 2 2 2 x 2 2 Ce 2 lnwx 1 c wx 1 Ce 2 w 2 2 x2 1 x 2 x 2 y Ce 2 2 Ce 2 v dx y (1 x ) dx 1 x2 2 2 2 2 x 1 x 1 x 2 2 2 2 Ce The general solution is y c11 x c2 (1 x ) dx 2 2 x 1 </p><p>-9-</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages9 Page
-
File Size-