A Method for Finding a Square Root of a 2X2 Matrix

A Method for Finding a Square Root of a 2X2 Matrix

<p> A Method for finding a Square Root of a 2x2 Matrix</p><p>By: P. C. Somayya. [email protected]</p><p> a11 a12 Let A = a21 a22 </p><p> and B = ± √ A.</p><p> a11+ T a12 then B = ± (1/R) a21 a22 + T </p><p>Where T = √ | A |</p><p>R = a11 + a12 + 2 T </p><p>Ref: Paper entitled “ Root of a 2x2 Matrix” Published in The Mathematics Education Vol.. XXXI. No. 1, March 1997. Siwan, Bihar State. INDIA, is given below : The Mathematics Education Vol. XXXI, No. 1, March 1997. Root of a 2 x 2 Matrix By P. C. Somayya, Vice Principal, S.B.E.S College of Science, Aurangabad 431 001, M.S. India. [ Received March 28, 1995 ] Summary: A Method for finding root of a 2x2 matrix is proposed in this paper. Method : Suppose A11 A12 A = (1) A21 A22</p><p>And B = A1/2 (2)</p><p>Case 1 : If A12 = A21 = 0</p><p>Obviously we get, ±√A11 0 B = (3) 0 ±√A22 </p><p>Case 2: If A12=0 & A21 ≠ 0</p><p>It can be easily verified that</p><p>, ±√A11 0 B = (4) ± A21 /(√A11 + √A22) ±√A22 </p><p>Similarly, we get, </p><p>, ±√A11 ± A12/(√A11 + √A22) B = (5) 0 ±√A22 </p><p>If A12 ≠ 0 and A21 = 0.</p><p>Case 3: If A12 ≠ 0 and A21 ≠ 0</p><p> then</p><p>, (A11 + T) A12 B = ±(1/R) (6) A21 (A22 + T) </p><p>½ Where T = | A | = √ A11 A22 - A12 A21 (7)</p><p>{ 53 }</p><p>{ 54 }</p><p>2 And R = A11 + A22 + 2 T , R ≠ 0 (8)</p><p>2 Proof : B * B = ( 1/ R ) (A11 + T) A12 (A11 + T) A12</p><p>A21 (A22 + T) A21 (A22 + T) </p><p>2 2 = ( 1/ R ) (A11 + T) +A12 A21 A12(A11+T)+A12(A22+T) </p><p>2 A21(A11+T)+A21(A22+T) (A22+T) + A12 A21 </p><p>2 2 2 = ( 1/ R ) (A11) + 2 A11 T + (T +A12 A21) A12 (A11+A22+ 2T) </p><p>2 2 A21(A11+A22+2T) (A22) +2A22T +(T + A12 A21) </p><p>2 2 2 = ( 1/ R ) (A11) + 2 A11 T + A11 A22 A12 R </p><p>2 2 A21R (A22) +2A22T +A11 A22 </p><p>2 2 2 = ( 1/ R ) (A11) R A12 R </p><p>2 2 A21 R (A22) R</p><p>= A.</p><p>Example: (1) 1 3 A = 2 5 6 , |A| = -9 , T= 3i and R = A11+A22+2T= 1+6+6i = 7+6i </p><p>(1+ 3i ) 3 B= [± 1/ √(7+6i)] 5 (6+ 3i ).</p><p>(2) 11 -3 A = 2 6. |A| = 72 and T= 6√2 , R2 = 17 + 12 √2</p><p>11+6√2 -3 B = [± 1/ √(17+12√2)] 2 6 (1+√2)</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us