Další Charakteeistiky Provozu Opravovaných Soustav

Další Charakteeistiky Provozu Opravovaných Soustav

<p> Markov models – lesson 6</p><p>Computation of system with repair or backup in general is very complex  Can be simplified for some failure and repair distribution (exponential) using Markov models</p><p>Basic features of Markov models for system reliability:</p><p> function of two random variables (state of the system and time or other variable on which the state depends)  two random variable can be discrete or continuous  4-type of models basic models: discrete time discrete state of the system </p><p>Markov chain </p><p> continuous time discrete state of the system </p><p>Markov process </p><p> Markov model is define as:</p><p> set of probability transitions between states (initial state  consecutive state) S1 p S2</p><p>Where: p depends only on state S1 & S2 (it do not depend on old previous states, sometimes Markov models are called models without memory) p=p(S1,S2) In Markov model are defined mutually exclusive states of the system: Example: 1 component ~ 2 states (failure, correct working) without repair</p><p>Definition: initial state ~ t=0 final states ~ t>></p><p> System of Markov equations ~ description of probability of transition from initial state to final states  System of Markov equations suppose:</p><p>1) Probability of transition from one state to another in time interval t is i(t).t, where i(t) is probability rate of transition (so called hazard) between both states 2) Probability of more than one transition in time t is 0 (negligible error)</p><p>Remark: if i(t)=i  homogenous model</p><p>Example: suppose we have system with one component with two states and without repair.</p><p>The probability PS0(t+t) is the probability that the system will be in state without failure S0 in time t+t. It holds:</p><p>PS0(t+t)= PS0(t).(1-(t).t); where PS0(t) probability of working without failure in time t and (1-(t).t) is probability that the failure was not in time t</p><p> similar probability of failure state S1</p><p>PS1(t+t)= PS0(t).(t).t+ PS1(t); where (t).t is probability of failure in time t PS1(t) is probability that the system was in failure state S1 till time t</p><p>Therefore:  probability of the system failure: (t).t  probability of failure persistence: (~state S1) =1 (absorbing state)</p><p>Previous equations can be converted: P t  t P t S0 S0  tP t t S0 P t  t P t S1 S1  tP t t S0 With limit for t  0 : dP t S 0  tP t  0 dt S 0 (1) dP t S1  tP t dt S 0</p><p> general init condition is: t=0, So PS0(0)=1 and PS1(0)=0 Solution of previous equation system dP t S0  tt PS0t t ln PS0t   tdt  ln c 0 t  tdt 0 PS0t  ce ; where c  PS00  1 t   tdt 0 Rt  PS0t  e</p><p>Solution equation(2), similar (can be computed by PS0(t)+ PS1(t)=1) t   tdt 0 Qt  PS1t  1 e  Markov model graph representation  oriented graph (previous example): 1-t </p><p>t</p><p>S0(=x1) S1(=x1)</p><p>Necessary condition for every state:  probabilities of all transitions from one state = 1 situation for two components without repair: (4 states: X1X2, X1X2, X1 X2, X1 X2 )</p><p>13t </p><p>01t 13t S1(=X1X2) [01+02]t 1 this transition is vanished </p><p>(in practice do not arrive) S0(=X1X2) S3(=X1X2) 23t 02t 23t </p><p>S2(=X1X2) </p><p>The previous situation is described by equations for S0, S1, S2, S3</p><p>S0: PS0(t+t)=[1-(01+02)t] PS0(t)</p><p>S1: PS1(t+t)=01t PS0(t)+(1-13t)PS1(t)</p><p>S2: PS2(t+t)=02t PS0(t)+(1-23t)PS2(t)</p><p>S3: PS3(t+t)=13t PS1(t)+23t PS2(t)+1.Ps3(t) With matrix:</p><p>[PS0(t+t) PS1(t+t) PS2(t+t) PS3(t+t)]=</p><p>1 01  02 t 01t 02 t 0   0 1  t 0  t [P (t) P (t) P (t) P (t)]*  13 13  S0 S1 S2 S3  0 0 1  t  t   23 23   0 0 0 1 </p><p> so: PS(t+t)= PS(t).p matrix of transition probabilities</p><p> vector of probabilities of states in time t+t and t</p><p>Matrix of transition probabilities can be created directly from graph representation of Markov model </p><p>Pkj denotes the probability of transition from state k  to state j p=[Pkj]  rows ~ initial states in time t  columns ~ end states in time t+t</p><p>Remark: element for k=j ~ probability of persist in state zero element ~ transition cannot arrive</p><p> Pkj 1!! ~ sum in rows =1, system has to be in next k step in some state from defined state set (stochastic matrix) Writing in differential type: changing the equation for S0 (from previous example):</p><p>P t  t P t S 0 S 0     P t and limit t 0 we receive: t 01 02 S 0 ˙ PS 0 t  01  02 PS 0 t and similar for S1, S2, S3 ˙ PS1 t  01PS 0 t  13 PS1 t ˙ PS 2 t  02 PS 0 t  23 PS 2 t ˙ PS3 t  13 PS1 t  23 PS 2 t</p><p>Using matrix:</p><p> 01  02  01 02 0   0   0   ˙  13 13  PS t  PS t.z  matrix of transition rate z   0 0  23 23     0 0 0 0   sum in every row is = 0 !!!</p><p> solution of previous equation system for previous example PSi(0)=0 ; i=0…3</p><p>For i = constant we receive:</p><p>01 02 t PS0t  e</p><p>01 13t (01 02 )t PS1t  e  e  01  02  13</p><p>01 23t (01 02 )t PS2t  e  e  01  02  23 PS3t  1 PS1t PS1t PS2t</p><p>Conclusion: probability of states S0…S3 computed independently on structure of the system  it holds for every system configuration with two components without repair So special case: Serial system: R(t)=PS0(t) - both components working without failure Parallel system: R(t)=PS0(t)+ PS1(t)+ PS2(t) -at least one component works without failure System with backup: -t - 02=0, 01=13, PS2(t)=0  R(t)=PS0(t)+PS1(t)=e +te</p><p>Complexity of Markov model</p><p> depends on number of system’s states m  m – differential equations of 1-st order  in general for n components with k-states m=k n !! increase very quickly</p><p> simplification  distinction only states with different number of failure components (for n components with 2 states the previous number of Markov states m=2n decrease to m=n-1)</p><p>Example: Previous system with two components can change by merging states S1 and S2 and introducing probability PS1'(t)=PS1(t)+ PS2(t) Markov graph is:</p><p>1-'01t 1-'12t 1 </p><p>'01t '12t </p><p>S'0(=X1X2) S'1(=X1X2+ X1X2) S'3(=X1X2) No failure One failure Two failures </p><p>Simplification of graph for 13=23 can be different and '01=01+02 , '12=13=23</p><p>Using Markov model for systems with repair</p><p> How the repair changes the Markov graph?</p><p>It introduce the transition from states with w failed components to states with w-1 failed components.</p><p>Example: Markov graph for system with one component with repair (constant failure rate  and repair rate ).</p><p>˙ PS 0 t  PS 0 t  PS1t ˙ PS1t  PS 0 t  PS1t 1-t 1-t t</p><p>S0(=x1) S1(=x1) t</p><p>With initial condition PS0(0)=1 and PS1(0)=0 </p><p>  P t   exp   t S 0         P t   exp   t S1       in time t the system is working without failure = availability factor KP(t)=PS0(t)  The stable value of KP = lim´K p t  t   </p><p>1</p><p>1 2 3 4 5 t               </p><p>1 1 1    K t  ˙ 1 P  Usually the mean values holds   1    Solution of complex systems with repair: . similar to system without repair (introduce the new transition that correspond to repairs  modification of some matrix elements) . for big number of states can simplify by merging some states . constant failure rate and repair rate  homogenous differential equations  simply solution </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us