Excellence Questions: Complex Numbers

Excellence Questions: Complex Numbers

<p> Excellence Questions: Complex Numbers Manipulate real and complex numbers, and solve equations 90638</p><p>1. Simplify i4n+ 3</p><p>2. Find the modulus and argument of the complex numbers 1+ i 2 z=, w = 1-i 1 - i Plot the points representing z, w, z + w on an Argand diagram and show from the 骣3p diagram that tan琪 = 1 + 2 桫8</p><p>3. If z= x + iy satisfies the equation (2-i) x -( 1 + 3 i) y - 7 = 0 , find x and y.</p><p>4. If z= a + ib , and z satisfies the equation (2+i)( z + 3 i) = 7 i - 6 , find a and b.</p><p>5. simplify each expression, giving the answer in the form a+ bi a) (cos3q+i sin 3 q)( cos5 q + i sin 5 q ) cos9q+ i sin 9 q b) cos 2q- i sin 2 q (cos 2q+ i sin 2 q )3 c) (cosq+ i sin q )2 (cos1p- i sin 1 p )3 d) 7 7 1 1 4 (cos7p+ i sin 7 p )</p><p>6. Use De Moivre’s Theorem to prove: a) cos 4q= 8cos4 q - 8cos 2 q + 1</p><p> b) sin 5q= 5sin q - 20sin3 q + 16sin 5 q 4 tanq- 4 tan3 q c) tan 4q = 1- 6 tan2q + tan 4 q</p><p>1 1 7. Prove that if z is a complex number, zn+ =2cos nq , z n - = 2 i sin n q zn z n</p><p>8. If w is a complex root of 1, show that 1+w + w2 = 1.</p><p>Complex numbers 90638 1 Excellence 9. If w is a complex root of 1, simplify the following; a) (1+ 3w)( 1 + 3 w2 ) 2 b) (1+ 3w + w2 ) 2 c) (1+w + 3 w2 )</p><p>骣2p 骣 2 p n2 n 3 n 10. If w=cos琪 + i sin 琪 , find all possible values of (w+ w + w ) where n is 桫3 桫 3 an integer.</p><p>11. Find the cube roots of -1 in the form a+ ib . Using this result, solve the equation ( z-1)3 + z3 = 0</p><p>20 3- 12i 12. Given that z2 = , find the two values of z in polar form. 3- 9i</p><p>13. Given that cosq+i sin q = eiq , show that cosq-i sin q = e-iq and that eiq+ e- i q = 2cosq</p><p>14. Express 3 - i in the form reiq where r >0, -p < q p and show that n n n+1 骣np 3-i + 3 + i = 2 cos琪 ( ) ( ) 桫6</p><p>15. Sketch on an Argand diagram the locus of the point which moves according to each equation. a) z -3 = 2 b) z+ i = 1 c) z-1 + 2 i = 3</p><p>16. Shade the areas represented by: a) z -2 < 3 b) z+1 - i 1 c) z- i > 2 d) z� z i</p><p>17. Find the locus of the point which moves so that z-1 = z + i</p><p>18. Find the locus of the point which moves so that z-2 = x + 2 , where z= x + iy . p 19. Sketch the locus of the point P( x , y ) represented by arg( z- a) = , where a=1 + i . 2 20. Sketch the locus represented by</p><p>Complex numbers 90638 2 Excellence p 骣z -1 p a) arg( z- i) = b) arg琪 = 4 桫z +1 2</p><p>骣z -1 p 21. If arg琪 = , show that the locus of P( x , y ) where z= x + iy lies on the arc of a 桫z +1 4 circle and find the coordinates of the centre and the radius.</p><p>22. Sketch the locus of P( x , y ) , which moves such that z-1 = z - 3 i</p><p>23. Find the ratio of the greatest value of z +1 to its least value when z- i = 1</p><p>24. Given that 2 + i is a root of the equation x4+ ax 3 + bx 2 +25 = 0 , find the other roots.</p><p>25. a) Find the complex numbers u and v which satisfy the simultaneous equations 3u+ v = 4 i u- iv =8 + 2 i b) Find the locus of P such that z- u = z - v</p><p> c) Find the two complex numbers z1, z 2 of this locus for which z-4 - 3 i = 5</p><p>26. Find the locus of z-1 = z + 1 + 1</p><p>27. Prove that the roots of z3+3 pz 2 + 3 qz + r = 0 form an equilateral triangle if and only if p2 = q .</p><p>28. If u= a + ib, v = c + id , prove that a) uv= u. v b) if u- 1� u 1 then a 0</p><p>29. a) Find all the solutions to z4 = 81 4 b) Find all the solutions to ( z-2) = 81 z4</p><p>骣2p 骣 2 p 30. If z=cos琪 + i sin 琪 , where k is a positive integer, show that: 桫k 桫 k 1+z + z2 + z 3 + ..... + z k - 1 = 0</p><p>31. For the complex equation z3 =cosq + i sin q , prove that the sum of the three solutions for z is always zero.</p><p>Complex numbers 90638 3 Excellence Answers 1. -i 1骣 1 3p 2. z+ w = +琪1 + i . The angle this makes with the x-axis is 2桫 2 8 3. x=3, y = - 1 4. a= -1, b = 1 5. a) cos8q+ i sin8 q b) cos11q+ i sin11 q c) cos 4q+ i sin 4 q d) -1 9. a) 7 b) 4w2 c) 4w 10. If n is a multiple of 3, the value is 1 + 1 + 1 = 3 If n is not a multiple of 3, the value is w+ w2 +1 = 0 1 1 1 11. , 1+i 3 , 1 - i 3 2 2( ) 2 ( ) 骣p p 骣 -5 p - 5 p 12. 2琪 cos+i sin , 2 琪 cos + i sin 桫6 6 桫 6 6 15. a) circle, centre (3, 0) radius 2 b) circle, centre (0, -1) radius 1 c) circle, centre (1, -2) radius 3 16. a) area inside circle, centre (2, 0) radius 3 b) area inside and including the circle, centre (-1, 1) radius 1 c) area outside circle, centre (0, 1) radius 2 d) y 0.5 17. The distance from the point to (1, 0) is the same as the distance of the point from (0, -1). So the perpendicular bisector of the line joining these points. ( y= - x ) 18. The distance between ( x, y) and (2, 0) is equal to x + 2 so ( x-2)2 + y2 = x + 2 This gives y2 = 8 x , a parabola. 19. This is the line PA where A is (1, 1). PA makes an angle of 90° with the x-axis. So the vertical line x =1, where y 1 20. a) y= x +1, x 0 b) x2+ y 2 =1, y 0 21. centre (0, 1), radius = 2 1 22. y=3 ( x + 4) 2+ 1 23. ratio is 2- 1 24. 2+i , 2 - i , - 2 + i , - 2 - i</p><p>25. a) u=1 - i , v = - 3 + 7 i . b) Locus is 2y= x + 7 c) z1=7 + 7 i , z 2 = - 1 + 3 i 26. Hyperbola, foci 1, -1 27. Put z+ p = Z 1 1 3i 29. a) 北3, 3i b) -1, , 2 5 5</p><p>Complex numbers 90638 4 Excellence</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us