
<p> RESPIRATORY SYSTEM</p><p>CHAPTER 15</p><p>External & Internal Respiration: Fig 15.1</p><p>Lung structures: Conducting zone Trachea Bronchi Bronchioles Terminal bronchioles</p><p>Respiratory structures Respiratory broncioles Alveolar DUCTS ALVEOLI</p><p>(see Fig 15.3)</p><p>Fig 15.5</p><p>Alveoli Surrounded by capillaries 300 - 500 million 75 m2 total surface area Very short diffusion distance Fig 15.5 Fig 15.6 Fig 15.7</p><p>Respiratory structures Diaphragm Thorasic cage Ribs (12 pairs) Sternum Intercostal muscles: External and internal see Figs 15.10</p><p>Fig 15.10: Muscles of Ventilation</p><p>Fig 15.9 Fig 15.15: Spirometer</p><p>TIDAL VOLUME vs. ALVEOLAR VENTILATION 500 ml / breath x 12 breaths / min 150 ml / breath x 40 breaths / min 1000 ml /breath x 6 breaths / min</p><p>IN EACH CASE TIDAL VOLUME = 6 L / min SO, WHICH ONE IS BEST?</p><p>Consider DEAD SPACE You must subtract the volume of each breath that does not reach the alveoli to get the alveolar ventilation rate</p><p>To illustrate, try breathing through a garden hose</p><p>(500 - 150 ml) / breath x 12 breaths / min = 4200 ml / min</p><p>(150 - 150 ml) / breath x 40 breaths / min = 0 ml / min</p><p>(1000 - 150 ml) /breath x 6 breaths / min = 5100 ml / min</p><p>COMPLIANCE</p><p>C = V / P </p><p>L U N G</p><p>V O L U M E</p><p>P L E U R A L P R E S S U R E Lung </p><p>Volume </p><p>(L)</p><p>- 1 0 - 2 0 - 3 0 Pleural Presure (cm H2O)</p><p>Normal: FEV1 = 4.0 L ; FVC = 5.0 L</p><p>Obstructive: FEV1 = 1.3 L; FVC = 3.1L Volume (L)</p><p>Time (sec) Fig 19.9 LaPlace’s Law as applied to alveoli:</p><p>P = 2T / r</p><p>FROM INHALATION TO EXHALATION: P = 2 X 50 dynes/cm P = 2 X 50 dynes/cm 0.05 cm 0.025 cm</p><p>P = 2000 dynes/cm2 P = 4000 dynes/cm2</p><p>Therefore, surface tension must decrease as alveolar radius decreases!</p><p>Thus, as alveolar radii decrease, the (2T / r) or alveolar wall tension gets larger than the pressure and alveoli would collapse.</p><p>If P = 2T / r 2 at end of inhalation, then P > 2T / r1 and alveoli collapse at exhalation</p><p> r2 r1</p><p>How do alveoli adjust to prevent this?</p><p>Surface tension: Due to its polar nature, water molecules adhere together, giving rise to surface tension at air - water interfaces To decrease surface tension, add detergent! (also called surface active agent or surfactant)</p><p>Secreted by Alveolar Type II Pneumocytes C - O - C - (CH2) 14 - CH3</p><p>C - O - C - (CH2) 14 - CH3</p><p>Choline O- - P - O - CH2</p><p>SURFACTANT: Dipalmytol Lecithin (DPL) or Dipalmytol Phophatidylcholine (DPPC)</p><p>THUS Surface Tension is proportional to 1/ [DPL] at the surface of the water layer in the alveoli and it changes as alveoli change radii during respiration</p><p>= DPL I n h a l a t i o n</p><p>L u n g F l u i d</p><p>E x h a l a t i o n</p><p>L u n g F l u i d</p><p>Fig. 19.23</p><p> see Toolbox on page 486-7 !!!</p><p>As alveolar r decreases during exhalation, LaPlace’s Law P = 2T/r is satisfied and the alveoli do not collapse. Hyaline membrane disease: An insufficiency of dpl secretion by a new born</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-