<p> HAEF IB - MATH HL TEST 5 DERIVATIVES by Christos Nikolaidis</p><p>Name:______Marks:____/100</p><p>Date:______Grade: ______</p><p>Questions</p><p>1. [Maximum mark: 6]</p><p>Show from first principles that the derivative of the function f (x) 2x 3 x 2 is</p><p> f (x) 6x 2 1 </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 1 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 2 2. [Maximum mark: 9]</p><p>Find the derivatives of the following functions (do not simplify)</p><p>(a) f (x) e 2x sin x e3 arctan 2 ln [3 marks]</p><p>...... </p><p>(b) g(x) sin 3 (2x 2 1) [3 marks]</p><p>...... </p><p>1 (c) h(x) x 3 ln(x 4 1)sin 2x [3 marks]</p><p>...... </p><p>...... </p><p>3. [Maximum mark: 9]</p><p>The tables below show the images of two functions f and g and their derivatives at some values of x</p><p> x 1 2 3 4 x 1 2 3 4 f (x) 2 3 -1 3 g(x) 5 3 1 -3 f ' (x) 0 2 5 4 g' (x) 2 1 4 3</p><p>Find the derivatives of the following functions when x = 2.</p><p> f (x) (a) (b) f x3 g(2x) (c) g f (x) [3+3+3 g(x) 1 marks]</p><p>...... </p><p>Page 3 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 4 4. [Maximum mark: 9]</p><p>The line y 4x 2 is tangent to the curve y mx 3 nx 2 1, at the point where x=1. (a) Find the values of m and n. [5 marks]</p><p>(b) Find the normal line at the same point. [2 marks] 5 (c) Find the normal line at the point where x [2 marks] 3</p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... Page 5 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 6 5. [Maximum mark: 7]</p><p>Find, showing all your work the coordinates of the stationary points of the curve x 3 f (x) x 2 x 2 and determine their nature.</p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>6. [Maximum mark: 5]</p><p> dy Given that the derivative of the function y cos x is sin x , find the derivative dx of the inverse function y arccos x in terms of x.</p><p>...... </p><p>...... </p><p>Page 7 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>7. [Maximum mark: 10]</p><p>A cubic function has a maximum at (0,5) and a point of inflexion at (1,1). </p><p>(a) Find an expression of the cubic function in terms of x. [7 marks]</p><p>(b) Find the x-coordinate of the minimum point and justify that it is </p><p> a minimum. [3 marks]</p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 8 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 9 8. [Maximum mark: 10]</p><p>Find the gradients of the following curves at the points where x = 1. </p><p>(a) y x 2x1 [4 marks]</p><p>(b) x 2 y 2 3xy 11 [6 marks]</p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 10 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>9. [Maximum mark: 6]</p><p>The diagram below shows the graph of y f (x) which passes through the stationary </p><p> points A, B, C. </p><p> y f (x)</p><p>A C</p><p>B</p><p>(a) Complete the following table of signs (with + or – appropriately)</p><p> x A B C y f (x) [2 marks]</p><p>(b) Sketch the graph of the function y f (x) , by indicating the x-intercepts</p><p>Page 11 y f (x)</p><p>[3 marks]</p><p>(c) Write down the number of solutions of the equation f (x) 0 . [1 mark]</p><p>...... </p><p>Page 12 10. [Maximum mark: 9]</p><p> dA dB The quantities A and B increase at rates 3 and 2 respectively. Find dt dt</p><p>(a) the rate of change of C at the moment when C 17 , given that </p><p>C 2A3 1. [3 marks]</p><p>(b) the rate of change of D at the moment when D e , given that </p><p>3 ln D [3 marks] B</p><p>(c) The rate of change of F, at the moment when A B 1, given </p><p>F 2 2 B 2B 3 [3 marks]</p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 13 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 14 11. [Maximum mark: 10]</p><p>A rectangle is enclosed between the x-axis, the curve y x , and the vertical line x 9 , so that the lower vertices are on the x-axis, one of the upper vertices is on the curve, while the other vertex is on the vertical line. The area of this rectangle is denoted by A.</p><p>(a) Write down an expression for A in terms of x. [2 marks] (b) Find the maximum value of A and justify your answer. [4 marks] (c) Hence find the dimensions of the rectangle of maximum area which is enclosed by the curve y 2 x and the vertical line x 9 . [2 marks] (d) Write down the values of x for which we obtain a rectangle of minimum area A. [2 marks]</p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 15 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>12. [Maximum mark: 10]</p><p>A tank has the shape of a regular square pyramid with apex down, as shown below. </p><p>The side of the square base has length x = 6 metres while the depth of the tank is 10 metres. Water flows into the tank at 10 m3 per minute. Find </p><p>(a) the rate of change of the depth of the water at the instant when the water is 5 meters deep. [7 marks]</p><p>(b) Given that the tank is empty at the beginning, find the rate of change of the depth of the water after 90 seconds. [3 marks]</p><p>Page 16 ...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>...... </p><p>Page 17</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages17 Page
-
File Size-