A) What Is the Fermi Temperature of the Gas?

A) What Is the Fermi Temperature of the Gas?

<p>19.2) consider a kilomole of 3 He gas atoms under STP conditions</p><p>No. of 3He atoms at STP = N = 1 kilomole = 6.0231026</p><p>Volume at STP =V = 22.4 dm3 </p><p>3 27 Mass of 3He atom = m =  4.9810 6.0231026</p><p> a) What is the Fermi temperature of the gas?</p><p>Fermi Temperature = TF  ?</p><p>We know that</p><p>2 h 2  N  3 TF    2mk 1.504v  2 2 6.6261034   6.0231026  3    27 23   2  4.9810 1.3810 1.504 22.4   0.069K  0.07K</p><p>FermiTemperature  TF  0.07K</p><p>   b) Calculate and exp  kT  kT    ? kT we knowthat</p><p>3    2mkT  2 V   ln2   kT h 2 N     3  2   27 23    2  4.9810 1.3810  273 22.4   ln 2 2 26   6.6261034   6.02310        12.7 kT    exp   e kT  ?  kT </p><p> e kT  3.28105</p><p>3 kT c) Find the average occupancy f  of a single particle state that has energy of  2</p><p>Energy :   3 kT 2 Chemical Potential :   12.7kT AverageOccupancy : f    ? We knowthat 1 f       KT e 1 1  3 12.7 kT  2  e kT 1 1  1.469106 f    6.8107 Average Occupancy  f    6.8107 19.3) For a system of noninteracting electrons, show that the probability f   of finding an electron in a state with energy ∆ above the chemical potential μ is the same as the probability of finding an electron absent from the with energy ∆ below μ at any given temperature T N  1 f        g  e kT 1 where     1 f     e kT 1 for the probability of absent at      1 1 1 f       1  e kT 1 e kT 1  e kT 1 1 1 f        e kT 1 1 1 e kT 1  e kT thereforethey areequal to eachother</p><p>19.4a) Verify that the average energy per fermion is 3  at absolute zero by making 5  F a direct calculation of U 0 N Use equation 19.18 3 U  N forT  0 5 F U 3   T o    N 5 F b) Similarly, prove that the average speed of a fermion gas particle at T=0 is 3  , 4 VF 3 2 where the Fermi velocity V is defined by  F   mvF F 5  v  f v gv dv v   0 N Nv 1 f v    1 2   mv   gv  2  e kT 1 g  d  gv dv</p><p>1 2 3 8 2V  1 2  1 gv dv  m 2  mv   mv  dv h3  2  2 1 2  1 2  1 mv  mv  dv    8 2V 3 2 2 v  m 2   3  1 2    mv   h 0  2  kT   e  1 3 2  3 8 2V  1  3 v v  m dv 3    1 2    mv   h 2 0  2    kT   e  1 need touseint egrationin part!</p><p>19.6) At very low temperature, the electronic specific heat capacity of a metal is </p><p> approximately ce  AT where A can be determined by experiment. For gold, the constant A is found to be A  0.73J kilomole1K 1 . Compare this to the value obtained from Equation (19.20). (The atomic weight of gold is 197 and its density is18.9103 kgm3 ) From eqn (19.20), one identifies  2   Nk 2 TF 2 34 2 3 3 1 1 6.6310   318.910 26  withT        6.0210  F k F 8.62105 eVk 1 29.111031  8 197 </p><p>TF  62028k  2 6.021026 1.3811023 Jk 1 A   2 62028k  0.66J  kilomole1K 2</p><p>19.7 a) Calculate  F for aluminum assuming three electrons per aluminum atom.</p><p>3 Kg N 2.6910 3 atoms  m 6.021026  5.991028 V 27 Kg kilomole kilomole N # Density for electrons  3 V 1.81029</p><p>2 2 6.631034   31.81029  3      5.6 2.1 11.8eV F 31   29.1110  8 </p><p> b) Show that the aluminum at T=100 K, μ differs from  F by less than 0.01%. (The density of aluminum is 2.69103 kgm3 and its atomic weight is 27.) 2   2  T      1    0 12  T    F   2      2       1000k     0 1  12  11.8eV     5 1     8.6210 eVk   5  0 1 4.3810  lessthan0.01%</p><p> c) Calculate the electronic contribution to the specific heat capacity of aluminum at room temperature and compare it to 3R</p><p>  T   2  kT      Ce  Nk   Nk  2  TF  2   F    8.617 105 eVk 1  2.43103    3 n  R   2    297J  kilomole  k 1</p><p>19.8) In sodium there are approximately 2.61026 conduction electrons per cubic meter, which behave as a free electron gas. Give an approximate value for the electronic specific heat of sodium at room temperature. (The atomic weight of sodium is 23.) In the series </p><p> expansion force , show that at this temperature the cubic term is negligible compared with the linear term. N  2.61028 V 2 6.631034 2  3 2.61028  3     F 29.111031  8   5.6eV  0.579  3.243eV   k  298  2 C  Nk   R  0.008 e 2  3.243  2  325J kilomole1k 1</p><p>19.10) calculate the isothermal compressibility of the fermion gas consisting of the free electrons in silver. Compare your answer with the experimental value for silver of 0.991011 Pa 1</p><p>1  2v       V  2 p T 2 NkT fromeq19.24 P  F 5 V 2 2 h 2  N  3  1  3 T      eq19.8 F 2mk 1.504  V </p><p>2  5 2 h2  N  3  1  3 P  Nk      5 2mk 1.504  V  2 Nh 2  N  3 1 P     5 5m 1.504  V 3 2 2 3 5 Nh  N  1 V 3     5m 1.504  p 3 2 5  Nh2  N  3  1 V       3 5m 1.504   p 5 3 2 5 dv  Nh 2  N  3   3 8         P 5 dp 5m 1.504    5 3 2 5 1  Nh2  N  3   3 8            P 5 v 5m 1.504    5 3 this equationleadsto  P with P  2.11010 Pa fromtextbook 5 3 3   P  2.11010 Pa 1.261011 Pa 1 5 5 6 19.12) For the white dwarf star Sirius B, do the computation leading to Rmin  7 10 m Use Equation (19.28) and (19.30) with the appropriate parameter value.</p><p>6 Rmin  7 10 m We knowthat 2a R  19.32 min b calculating b 3 b  GM 2 19.30 5 G  Gravitational energy  6.6731011 M  Mass of the sun  2.09 1030 kg</p><p>3 2 b  6.6731011 2.091030  5 b  1.751050 calculating a 2 2 3h  9  3 5 a    N 3 10me  32 2  calculating N 22 20 5 1.82 10 7.2310 56 N   6.1010 2 5.331014 so valueof ais</p><p>2 2 34 3 5 36.62610   9  56 a    6.1010  3 10 9.11031  32 2  a  1.451037  0.0933 4.3881094 a  5.921056 put values of a and bin19.32 25.921056  R  min 1.751050 6 6 Rmin  6.77 10  7 10 19.13) consider the collapse of the sun into a white dwarf. For the sun, M= 21030 kg R= 7108 m , V=1.41027 m3 a) Calculate the Fermi energy of the sun’s electrons</p><p>21030 No.of electrons   1.2051057 1.66 10 27 1 #of electrons  of nucleous 2 N 1.205 21057  V 1.41027 2 h 2  3N  3  F    2me  8V  2 1.205 7.231027  3   0.33m v     F e  27   1.26 1.410  5  F  0.33mev  6.24810</p><p> F  20.6eV</p><p> b) What is the Fermi Temperature?  20.6eV T  F   2.39105 k F k 8.62105 eVk 1 c) What is the average speed of the electrons in the fermion gas (see problem 19-4). Compare your answer with the speed of light. N 1.205 21057 Density  9.111031   9.111031  V 1.41027 kg  0.39 3 m</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us