
<p>19.2) consider a kilomole of 3 He gas atoms under STP conditions</p><p>No. of 3He atoms at STP = N = 1 kilomole = 6.0231026</p><p>Volume at STP =V = 22.4 dm3 </p><p>3 27 Mass of 3He atom = m = 4.9810 6.0231026</p><p> a) What is the Fermi temperature of the gas?</p><p>Fermi Temperature = TF ?</p><p>We know that</p><p>2 h 2 N 3 TF 2mk 1.504v 2 2 6.6261034 6.0231026 3 27 23 2 4.9810 1.3810 1.504 22.4 0.069K 0.07K</p><p>FermiTemperature TF 0.07K</p><p> b) Calculate and exp kT kT ? kT we knowthat</p><p>3 2mkT 2 V ln2 kT h 2 N 3 2 27 23 2 4.9810 1.3810 273 22.4 ln 2 2 26 6.6261034 6.02310 12.7 kT exp e kT ? kT </p><p> e kT 3.28105</p><p>3 kT c) Find the average occupancy f of a single particle state that has energy of 2</p><p>Energy : 3 kT 2 Chemical Potential : 12.7kT AverageOccupancy : f ? We knowthat 1 f KT e 1 1 3 12.7 kT 2 e kT 1 1 1.469106 f 6.8107 Average Occupancy f 6.8107 19.3) For a system of noninteracting electrons, show that the probability f of finding an electron in a state with energy ∆ above the chemical potential μ is the same as the probability of finding an electron absent from the with energy ∆ below μ at any given temperature T N 1 f g e kT 1 where 1 f e kT 1 for the probability of absent at 1 1 1 f 1 e kT 1 e kT 1 e kT 1 1 1 f e kT 1 1 1 e kT 1 e kT thereforethey areequal to eachother</p><p>19.4a) Verify that the average energy per fermion is 3 at absolute zero by making 5 F a direct calculation of U 0 N Use equation 19.18 3 U N forT 0 5 F U 3 T o N 5 F b) Similarly, prove that the average speed of a fermion gas particle at T=0 is 3 , 4 VF 3 2 where the Fermi velocity V is defined by F mvF F 5 v f v gv dv v 0 N Nv 1 f v 1 2 mv gv 2 e kT 1 g d gv dv</p><p>1 2 3 8 2V 1 2 1 gv dv m 2 mv mv dv h3 2 2 1 2 1 2 1 mv mv dv 8 2V 3 2 2 v m 2 3 1 2 mv h 0 2 kT e 1 3 2 3 8 2V 1 3 v v m dv 3 1 2 mv h 2 0 2 kT e 1 need touseint egrationin part!</p><p>19.6) At very low temperature, the electronic specific heat capacity of a metal is </p><p> approximately ce AT where A can be determined by experiment. For gold, the constant A is found to be A 0.73J kilomole1K 1 . Compare this to the value obtained from Equation (19.20). (The atomic weight of gold is 197 and its density is18.9103 kgm3 ) From eqn (19.20), one identifies 2 Nk 2 TF 2 34 2 3 3 1 1 6.6310 318.910 26 withT 6.0210 F k F 8.62105 eVk 1 29.111031 8 197 </p><p>TF 62028k 2 6.021026 1.3811023 Jk 1 A 2 62028k 0.66J kilomole1K 2</p><p>19.7 a) Calculate F for aluminum assuming three electrons per aluminum atom.</p><p>3 Kg N 2.6910 3 atoms m 6.021026 5.991028 V 27 Kg kilomole kilomole N # Density for electrons 3 V 1.81029</p><p>2 2 6.631034 31.81029 3 5.6 2.1 11.8eV F 31 29.1110 8 </p><p> b) Show that the aluminum at T=100 K, μ differs from F by less than 0.01%. (The density of aluminum is 2.69103 kgm3 and its atomic weight is 27.) 2 2 T 1 0 12 T F 2 2 1000k 0 1 12 11.8eV 5 1 8.6210 eVk 5 0 1 4.3810 lessthan0.01%</p><p> c) Calculate the electronic contribution to the specific heat capacity of aluminum at room temperature and compare it to 3R</p><p> T 2 kT Ce Nk Nk 2 TF 2 F 8.617 105 eVk 1 2.43103 3 n R 2 297J kilomole k 1</p><p>19.8) In sodium there are approximately 2.61026 conduction electrons per cubic meter, which behave as a free electron gas. Give an approximate value for the electronic specific heat of sodium at room temperature. (The atomic weight of sodium is 23.) In the series </p><p> expansion force , show that at this temperature the cubic term is negligible compared with the linear term. N 2.61028 V 2 6.631034 2 3 2.61028 3 F 29.111031 8 5.6eV 0.579 3.243eV k 298 2 C Nk R 0.008 e 2 3.243 2 325J kilomole1k 1</p><p>19.10) calculate the isothermal compressibility of the fermion gas consisting of the free electrons in silver. Compare your answer with the experimental value for silver of 0.991011 Pa 1</p><p>1 2v V 2 p T 2 NkT fromeq19.24 P F 5 V 2 2 h 2 N 3 1 3 T eq19.8 F 2mk 1.504 V </p><p>2 5 2 h2 N 3 1 3 P Nk 5 2mk 1.504 V 2 Nh 2 N 3 1 P 5 5m 1.504 V 3 2 2 3 5 Nh N 1 V 3 5m 1.504 p 3 2 5 Nh2 N 3 1 V 3 5m 1.504 p 5 3 2 5 dv Nh 2 N 3 3 8 P 5 dp 5m 1.504 5 3 2 5 1 Nh2 N 3 3 8 P 5 v 5m 1.504 5 3 this equationleadsto P with P 2.11010 Pa fromtextbook 5 3 3 P 2.11010 Pa 1.261011 Pa 1 5 5 6 19.12) For the white dwarf star Sirius B, do the computation leading to Rmin 7 10 m Use Equation (19.28) and (19.30) with the appropriate parameter value.</p><p>6 Rmin 7 10 m We knowthat 2a R 19.32 min b calculating b 3 b GM 2 19.30 5 G Gravitational energy 6.6731011 M Mass of the sun 2.09 1030 kg</p><p>3 2 b 6.6731011 2.091030 5 b 1.751050 calculating a 2 2 3h 9 3 5 a N 3 10me 32 2 calculating N 22 20 5 1.82 10 7.2310 56 N 6.1010 2 5.331014 so valueof ais</p><p>2 2 34 3 5 36.62610 9 56 a 6.1010 3 10 9.11031 32 2 a 1.451037 0.0933 4.3881094 a 5.921056 put values of a and bin19.32 25.921056 R min 1.751050 6 6 Rmin 6.77 10 7 10 19.13) consider the collapse of the sun into a white dwarf. For the sun, M= 21030 kg R= 7108 m , V=1.41027 m3 a) Calculate the Fermi energy of the sun’s electrons</p><p>21030 No.of electrons 1.2051057 1.66 10 27 1 #of electrons of nucleous 2 N 1.205 21057 V 1.41027 2 h 2 3N 3 F 2me 8V 2 1.205 7.231027 3 0.33m v F e 27 1.26 1.410 5 F 0.33mev 6.24810</p><p> F 20.6eV</p><p> b) What is the Fermi Temperature? 20.6eV T F 2.39105 k F k 8.62105 eVk 1 c) What is the average speed of the electrons in the fermion gas (see problem 19-4). Compare your answer with the speed of light. N 1.205 21057 Density 9.111031 9.111031 V 1.41027 kg 0.39 3 m</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-