Greece to Madagascar

Greece to Madagascar

<p>Greece to Madagascar ------log: K:\Greeceto Madagascar.log opened on: 25 Jul 2006, 19:25:36</p><p>. . *Dropping Greece . drop if ccode==162880 (10 observations deleted)</p><p>. . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist open english gdpdfration > ew white whitemg, stat(n mean sd median min max) col(stat) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 490692.9 1561333 7348 0 1.39e+07 immig | 1000 32163.15 116680 2790 0 1137050 gdp | 1000 2.78e+11 9.70e+11 1.63e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.6172 16.91667 102.6773 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.95e+07 1.54e+08 1.02e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1041.43 10901.85 13.89535 .0068 270182.6 remote | 1000 6767.609 4135.31 6797 1293 39620 dist | 1000 13352.02 3528.07 14215 2409 17972 open | 1000 .7107736 .3890883 .63975 .0671 3.2192 english | 1000 .37 .4830459 0 0 1 gdpdfratio~w | 1000 1.051665 .181073 1.015772 .5844526 2.009028 white | 1000 .12 .3251241 0 0 1 whitemg | 1000 19202.69 115962.6 0 0 1137050 ------</p><p>. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" countries)--RHS Variables > : . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist phone open eng > lish gdpdfrationew white whitemg, stat(n mean sd median min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 880 400345.4 1589043 3126 0 1.39e+07 immig | 880 14727.79 27016.52 1505 0 158613 gdp | 880 2.35e+11 9.96e+11 1.05e+10 1.92e+08 8.99e+12 gdpau | 880 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 880 104.8121 17.21914 101.7094 60.87417 207.3465 gdpdfau | 880 100.7173 4.633806 100.8223 94.42464 109.9797 pop | 880 5.29e+07 1.64e+08 1.05e+07 41000 1.26e+09 popau | 880 1.82e+07 612835.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 880 1169.546 11615.77 21.6609 .0068 270182.6 remote | 880 7159.151 4093.339 6938.5 1293 39620 dist | 880 13201.9 3402.569 14045.5 2410 17972 phone | 880 157.5574 241.028 49.13 .54 1449.75 open | 880 .7155966 .4091255 .63385 .0671 3.2192 english | 880 .3863636 .4871925 0 0 1 gdpdfratio~w | 880 1.043893 .185446 1 .5844526 2.009028 white | 880 0 0 0 0 0 whitemg | 880 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 120 1153241 1144725 557964.5 77099 3843839 immig | 120 160022.4 300276.5 17525 2612 1137050 gdp | 120 5.92e+11 6.72e+11 2.91e+11 5.15e+10 2.69e+12 gdpau | 120 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 120 111.521 13.129 112.2247 85.45601 143.9587 gdpdfau | 120 100.7173 4.65059 100.8223 94.42464 109.9797 pop | 120 2.45e+07 2.62e+07 8363820 3477200 8.22e+07 popau | 120 1.82e+07 615055.4 1.82e+07 1.73e+07 1.92e+07 xrate1 | 120 101.9149 305.1406 4.01625 .3774 1261.556 remote | 120 3896.3 3216.858 2809.5 1530 12501 dist | 120 14452.92 4193.792 15956 2409 17493 phone | 120 744.3583 272.0964 656.67 343.99 1487.08 open | 120 .675405 .181901 .65115 .3517 1.2967 english | 120 .25 .4348283 0 0 1 gdpdfratio~w | 120 1.108656 .1322944 1.117028 .8254872 1.441221 white | 120 1 0 1 1 1 whitemg | 120 160022.4 300276.5 17525 2612 1137050 ------</p><p>. . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000 . . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 9387.11 Log likelihood = -550.5287 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3311778 .0303683 10.91 0.000 .271657 .3906985 lgdp | 1.192529 .0310885 38.36 0.000 1.131597 1.253461 lgdpau | .2933321 .6030863 0.49 0.627 -.8886954 1.47536 lgdpdfrati~w | -.8289077 .2442678 -3.39 0.001 -1.307664 -.3501515 lpopau | -3.100607 2.079688 -1.49 0.136 -7.176721 .9755068 lpop | .0243778 .0412202 0.59 0.554 -.0564123 .1051679 lxrate1 | -.1253936 .0163015 -7.69 0.000 -.1573439 -.0934433 lremote | -.4322973 .0765841 -5.64 0.000 -.5823993 -.2821952 ldist | -2.066736 .1486536 -13.90 0.000 -2.358091 -1.77538 lopen | .272361 .0534975 5.09 0.000 .1675079 .377214 english | .9299396 .1036742 8.97 0.000 .7267419 1.133137 white | 4.584061 .4753754 9.64 0.000 3.652342 5.515779 lwhitemg | -.4252197 .0419208 -10.14 0.000 -.507383 -.3430565 _cons | 45.51357 19.11859 2.38 0.017 8.041814 82.98532 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000922 lgdp | -.000279 .000966 lgdpau | -.000836 .001298 .363713 lgdpdfrati~w | -.000824 .000244 -.009367 .059667 lpopau | .001864 -.007884 -1.23067 .050239 4.3251 lpop | -.00016 -.000655 .000078 .000119 -.000025 .001699 lxrate1 | .000097 .000142 .000374 .00019 -.002497 -.000129 .000266 lremote | .000404 .000205 -.000462 -.001745 -.003222 -.000238 .000052 .005865 ldist | .00164 .000705 .000981 -.000914 -.015353 .00024 .001339 .00522 .022098 lopen | -.000215 .000713 .002143 .000802 -.015132 .000291 .000181 .001307 .001633 english | -.000984 .001968 .002789 .00242 -.011173 -.000767 .000494 -.002372 .000968 white | .003598 .002181 .002889 -.011448 -.019352 .002108 .000689 -.003576 .011848 lwhitemg | -.000473 -.000191 -.000258 .001039 .002094 -.00013 -.000084 .000479 -.001547 _cons | -.025403 .076413 10.8515 -.629275 -39.1771 -.011867 .015474 -.034828 -.059247</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002862 english | -.000047 .010748 white | -.004448 .027699 .225982 lwhitemg | .000329 -.002324 -.019433 .001757 _cons | .148555 .086655 .031976 -.005756 365.521</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 76427.30 Log likelihood = -973.6812 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0531504 .0142643 3.73 0.000 .0251928 .081108 lgdp | 1.608108 .0522596 30.77 0.000 1.505682 1.710535 lgdpau | .8847219 .3639811 2.43 0.015 .1713321 1.598112 lgdpdfrati~w | -.4388931 .1507952 -2.91 0.004 -.7344464 -.1433399 lpopau | -6.242305 1.229219 -5.08 0.000 -8.651531 -3.833079 lpop | -.3555423 .0872896 -4.07 0.000 -.5266266 -.1844579 lxrate1 | -.1348412 .020804 -6.48 0.000 -.1756163 -.0940661 lremote | -.9874904 .1002633 -9.85 0.000 -1.184003 -.790978 ldist | -3.342909 .1779107 -18.79 0.000 -3.691608 -2.994211 lopen | -.0484027 .0271674 -1.78 0.075 -.1016499 .0048445 english | .9391452 .0888362 10.57 0.000 .7650295 1.113261 white | 5.052451 .8081619 6.25 0.000 3.468483 6.636419 lwhitemg | -.5102482 .0777342 -6.56 0.000 -.6626045 -.3578919 _cons | 94.7344 11.56409 8.19 0.000 72.06921 117.3996 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000203 lgdp | -.000272 .002731 lgdpau | -.001267 .001856 .132482 lgdpdfrati~w | -.000594 .000514 -.012169 .022739 lpopau | .004958 -.007392 -.437992 .024609 1.51098 lpop | .000172 -.004322 -.001552 .000563 .004115 .007619 lxrate1 | -.000025 .000286 -.000058 .000418 -.003247 -.000306 .000433 lremote | .000381 .000369 -.006802 -.003509 .024322 -.001358 .000069 .010053 ldist | .000691 -.002225 -.006726 -.000879 .015766 .003714 .000621 .003122 .031652 lopen | .000044 -.000112 -.000994 .00095 .003638 .000287 -.000076 .000643 .000282 english | -.000417 .000116 .003159 .002745 -.020799 .000515 .001169 -.002937 .003027 white | .001169 -.014593 -.00941 -.002126 .03824 .023257 -.001457 .002521 -.013491 lwhitemg | -.000103 .000824 .000288 1.3e-06 -.002265 -.00126 .000186 .000576 .002456 _cons | -.055782 .097952 3.91409 -.089985 -13.8749 -.073155 .045379 -.328962 -.432436</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000738 english | -.000409 .007892 white | .001974 -.001719 .653126 lwhitemg | -.000146 .00041 -.061147 .006043 _cons | -.045256 .242405 -.309808 .001871 133.728</p><p>. . . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7655.82 Log likelihood = -924.395 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1079281 .0249019 4.33 0.000 .0591213 .1567348 lgdp | 1.749329 .0740335 23.63 0.000 1.604226 1.894431 lgdpau | .3028557 .6278881 0.48 0.630 -.9277823 1.533494 lgdpdfrati~w | -.3821795 .2382988 -1.60 0.109 -.8492366 .0848775 lpopau | -2.937579 2.177879 -1.35 0.177 -7.206144 1.330986 lpop | -.6662399 .0824327 -8.08 0.000 -.8278049 -.5046748 lxrate1 | -.139217 .0289979 -4.80 0.000 -.1960519 -.0823822 lremote | -.3373833 .1390419 -2.43 0.015 -.6099005 -.0648661 ldist | -3.86761 .3462551 -11.17 0.000 -4.546258 -3.188963 lopen | .0906147 .0452372 2.00 0.045 .0019515 .179278 english | 1.068944 .1455461 7.34 0.000 .7836784 1.354209 white | 8.585664 1.864799 4.60 0.000 4.930726 12.2406 lwhitemg | -.7025082 .1873985 -3.75 0.000 -1.069803 -.3352138 _cons | 55.6305 20.46604 2.72 0.007 15.51781 95.7432 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .00062 lgdp | -.001001 .005481 lgdpau | -.0023 .006833 .394243 lgdpdfrati~w | -.000913 .002057 -.025578 .056786 lpopau | .005881 -.028187 -1.33281 .086834 4.74316 lpop | .000713 -.004531 -.004608 -.001065 .015832 .006795 lxrate1 | .000017 .000592 .000907 .000875 -.007887 -.000832 .000841 lremote | -.0001 -.000862 -.008588 -.002214 .026187 -.001539 .000237 .019333 ldist | .002668 .007735 -.008302 -.002906 -.025162 -.002135 .001692 .008441 .119893 lopen | .000097 -.000535 -.00033 .001516 .001317 .001017 -.000148 .000557 -.000574 english | -.001143 .003413 .008864 .003463 -.042889 .001322 .002159 -.006081 .003704 white | .001578 -.030939 .001617 .000141 .008618 .025435 .004068 .01274 -.13915 lwhitemg | -.000142 .001521 -.0022 -.000526 .008102 -.001659 -.000433 .001326 .010551 _cons | -.052197 .172252 11.8757 -.807718 -43.44 -.113232 .084114 -.416064 -.737323</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002046 english | -.00135 .021184 white | .00309 .017261 3.47747 lwhitemg | -.000207 -.002596 -.34173 .035118 _cons | -.016765 .388236 1.28286 -.193797 418.859</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2679.06 Log likelihood = -1124.78 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1249766 .0392264 3.19 0.001 .0480942 .2018589 lgdp | .8916273 .079025 11.28 0.000 .7367411 1.046513 lgdpau | -.9566093 .9623979 -0.99 0.320 -2.842875 .9296559 lgdpdfrati~w | .0019852 .3634762 0.01 0.996 -.710415 .7143854 lpopau | .8380423 3.288755 0.25 0.799 -5.607798 7.283883 lpop | .0295868 .0967726 0.31 0.760 -.160084 .2192576</p><p> lxrate1 | -.0874001 .0321259 -2.72 0.007 -.1503658 -.0244344 lremote | .4864375 .2487786 1.96 0.051 -.0011595 .9740345 ldist | -1.236612 .3082765 -4.01 0.000 -1.840822 -.6324008 lopen | .3206537 .0801332 4.00 0.000 .1635954 .477712 english | 1.9163 .2529399 7.58 0.000 1.420547 2.412053 white | .5319754 1.942959 0.27 0.784 -3.276153 4.340104 lwhitemg | .3158837 .1650818 1.91 0.056 -.0076706 .639438 _cons | .368453 30.88617 0.01 0.990 -60.16733 60.90423 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001539 lgdp | -.001394 .006245 lgdpau | -.000107 -.00053 .92621 lgdpdfrati~w | .000654 .002148 -.034538 .132115 lpopau | -.00445 -.00136 -3.10302 .093912 10.8159 lpop | .000197 -.005447 -.00051 -.002541 .001867 .009365 lxrate1 | .000171 .000755 .000818 .002707 -.009664 -.001131 .001032 lremote | .001923 .000064 -.033534 -.007819 .105267 .001205 -.000739 .061891 ldist | .003934 -.005546 -.019634 -.001438 .044808 .007719 .000253 .031857 .095034 lopen | .000162 -.000789 .000539 .001596 -.007041 .002876 -.000195 .002804 -.0013 english | -.003774 .000871 .008277 .002457 -.008892 -.000903 .000982 -.018809 .005135 white | .000709 -.028333 .000449 -.027213 .05229 .029169 -.00374 .037418 .003785 lwhitemg | -.000121 .001234 -.002031 .001373 .002334 -.001087 .000284 .000195 .004336 _cons | .043231 .038062 27.7107 -.720536 -99.4642 -.120945 .13675 -1.72957 -1.43718</p><p>| lopen english white lwhitemg _cons ------+------lopen | .006421 english | -.002158 .063979 white | .009467 .076863 3.77509 lwhitemg | -.000684 -.007157 -.311615 .027252 _cons | .065255 .038428 -1.05089 -.040607 953.956</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 57297.43 Log likelihood = -906.4859 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0252725 .0135577 1.86 0.062 -.0013001 .051845 lgdp | 1.546273 .054659 28.29 0.000 1.439143 1.653402 lgdpau | .7143331 .3550913 2.01 0.044 .018367 1.410299 lgdpdfrati~w | -.2603092 .137138 -1.90 0.058 -.5290948 .0084764 lpopau | -6.72283 1.201528 -5.60 0.000 -9.077781 -4.367879 lpop | -.1467022 .0941378 -1.56 0.119 -.3312089 .0378044 lxrate1 | -.0549155 .0190623 -2.88 0.004 -.092277 -.017554 lremote | -.6637535 .1521184 -4.36 0.000 -.9619001 -.3656069 ldist | -2.483571 .1721855 -14.42 0.000 -2.821049 -2.146094 lopen | -.0444073 .0270439 -1.64 0.101 -.0974123 .0085977 english | 1.111233 .1185173 9.38 0.000 .8789431 1.343522 white | 3.925557 .982064 4.00 0.000 2.000747 5.850367 lwhitemg | -.3118668 .095842 -3.25 0.001 -.4997137 -.1240199 _cons | 93.83116 11.37884 8.25 0.000 71.52903 116.1333 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000184 lgdp | -.0002 .002988 lgdpau | -.000871 .002024 .12609 lgdpdfrati~w | -.000337 .000747 -.007569 .018807 lpopau | .003156 -.006874 -.417745 .011862 1.44367 lpop | .000128 -.004853 -.001765 -.000041 .003182 .008862 lxrate1 | -6.1e-07 .000211 -.00011 .000458 -.002534 -.00023 .000363 lremote | -.00005 -.000837 -.013295 -.005175 .048505 -.000025 -.000141 .02314 ldist | .000852 -.005935 -.004399 .001391 .003476 .010474 .000693 -.003351 .029648 lopen | .000018 -.000103 -.000945 .000827 .003463 .00028 -.000071 .00111 .00025 english | -.000306 -.000497 .003129 .00286 -.017738 .000351 .001034 -.00427 .00753 white | .000882 -.017819 -.007797 .001362 .003918 .032511 .000836 -.000365 .040888 lwhitemg | -.00013 .000877 -.00081 -.000682 .004685 -.001865 -.000074 .002772 -.002723 _cons | -.035237 .133982 3.7744 .000039 -13.3641 -.136397 .036636 -.602068 -.237772</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000731 english | -.000493 .014046 white | .001197 .004875 .96445 lwhitemg | -8.7e-06 -.000084 -.090387 .009186 _cons | -.047312 .175096 -.367013 -.043906 129.478</p><p>. </p><p>. *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8303.91 Log likelihood = -944.5557 Prob > chi2 = 0.0000 ------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2350753 .0324994 7.23 0.000 .1713777 .298773 lgdp | 1.57182 .0758937 20.71 0.000 1.423071 1.720569 lgdpau | .0156751 .6626794 0.02 0.981 -1.283153 1.314503 lgdpdfrati~w | -.1151279 .267149 -0.43 0.667 -.6387304 .4084745 lpopau | -1.820266 2.314284 -0.79 0.432 -6.35618 2.715648 lpop | -.5327342 .0823502 -6.47 0.000 -.6941377 -.3713308 lxrate1 | -.1292222 .0289191 -4.47 0.000 -.1859026 -.0725418 lremote | -.3107685 .1289432 -2.41 0.016 -.5634926 -.0580444 ldist | -3.074014 .3422591 -8.98 0.000 -3.74483 -2.403199 lopen | .1194063 .0504406 2.37 0.018 .0205446 .218268 english | .8171685 .1368782 5.97 0.000 .5488922 1.085445 white | 9.240564 1.855988 4.98 0.000 5.602895 12.87823 lwhitemg | -.785234 .1862169 -4.22 0.000 -1.150212 -.4202556 _cons | 37.85046 21.82574 1.73 0.083 -4.927213 80.62812 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001056 lgdp | -.00161 .00576 lgdpau | -.002015 .005109 .439144 lgdpdfrati~w | -.001167 .002726 -.029423 .071369 lpopau | .00475 -.021814 -1.49401 .112019 5.35591 lpop | .000988 -.004679 -.003006 -.001699 .010878 .006782 lxrate1 | .000095 .000382 .00046 .001045 -.006612 -.000677 .000836 lremote | -8.4e-06 -.000722 -.005066 -.001332 .011264 -.001294 .00025 .016626 ldist | .004619 .002525 -.008763 -.002679 -.023971 .000295 .001838 .009353 .117141 lopen | .000128 -.000676 .001043 .001404 -.005815 .001367 -.000208 .000352 -.000918 english | -.001697 .004123 .005095 .004329 -.026057 -.000306 .002047 -.004812 -.00061 white | .001559 -.029537 .009781 -.000756 .000997 .022184 .004012 .012265 -.149402 lwhitemg | -.000097 .001658 -.002265 -.000463 .00564 -.001505 -.000385 .001014 .012988 _cons | -.053198 .158736 13.3654 -1.15545 -49.3589 -.094805 .074872 -.254136 -.659061</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002544 english | -.001436 .018736 white | .00408 .010229 3.44469 lwhitemg | -.000309 -.00178 -.339028 .034677 _cons | .06896 .25062 1.32248 -.177853 476.363</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8642.47 Log likelihood = -1108.553 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0157963 .0111371 1.42 0.156 -.006032 .0376246 lgdp | 1.304063 .0399145 32.67 0.000 1.225832 1.382294 lgdpau | .6704192 .3295221 2.03 0.042 .0245677 1.316271 lgdpdfrati~w | -.0844937 .0905818 -0.93 0.351 -.2620308 .0930433 lpopau | -7.255706 1.119171 -6.48 0.000 -9.449241 -5.062171 lpop | .1059401 .0561862 1.89 0.059 -.0041827 .216063 lxrate1 | -.02032 .0122817 -1.65 0.098 -.0443916 .0037516 lremote | -.4067515 .12964 -3.14 0.002 -.6608411 -.1526618 ldist | -3.156201 .24817 -12.72 0.000 -3.642605 -2.669797 lopen | .0114202 .0279674 0.41 0.683 -.0433948 .0662353 english | 2.566891 .1124506 22.83 0.000 2.346492 2.787291 white | 6.566077 1.396572 4.70 0.000 3.828847 9.303308 lwhitemg | -.3601438 .1277199 -2.82 0.005 -.6104703 -.1098173 _cons | 107.9772 11.10308 9.72 0.000 86.21555 129.7388 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000124 lgdp | -.000205 .001593 lgdpau | .000353 -.000962 .108585 lgdpdfrati~w | -.000065 .000224 .000072 .008205 lpopau | -.002326 .003348 -.358621 -.002139 1.25254 lpop | .000106 -.001671 .000546 7.5e-06 -.00335 .003157 lxrate1 | .000011 .000058 -.000285 .000273 -.000162 -.000122 .000151 lremote | .000075 .00073 -.014781 .003081 .042734 -.000731 .000344 .016807 ldist | .000425 .001144 -.009756 .001887 .015905 .000227 .000512 .011813 .061588 lopen | 9.3e-06 -.000066 .000547 .001178 -.001272 .00025 -.000062 .000757 .000123 english | -.000312 .000016 -.001157 .000037 .001229 .001694 .000386 -.001124 .004518 white | -.000079 -.010077 -.009467 .003503 .041657 .011781 .000797 .008319 -.119321 lwhitemg | .000026 .000568 -.000318 -.00008 -.000366 -.000642 -.000026 .000429 .013834</p><p>_cons | .027203 -.055797 3.33793 -.02528 -11.9198 .0321 .001825 -.591515 -.739093</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000782 english | -.000602 .012645 white | .000734 .008453 1.95041 lwhitemg | -.00003 -.000525 -.174681 .016312 _cons | -.004043 -.053291 .65731 -.124661 123.278</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 582.00 Log likelihood = -572.134 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3700374 .0405026 9.14 0.000 .2906537 .4494211 lgdp | .1082356 .0534517 2.02 0.043 .0034722 .212999 lgdpau | .456046 .3456805 1.32 0.187 -.2214754 1.133567 lgdpdfrati~w | -.6249579 .1313177 -4.76 0.000 -.8823358 -.3675799 lpopau | -3.493499 1.296364 -2.69 0.007 -6.034325 -.9526734 lpop | .4992088 .0809156 6.17 0.000 .3406172 .6578003 lxrate1 | -.1356636 .0233115 -5.82 0.000 -.1813533 -.0899739 lremote | .2456686 .151094 1.63 0.104 -.0504703 .5418074 ldist | -1.12548 .3956639 -2.84 0.004 -1.900967 -.349993 lopen | .1252932 .0194156 6.45 0.000 .0872392 .1633471 english | .7044846 .2136325 3.30 0.001 .2857725 1.123197 white | 10.54013 .7287972 14.46 0.000 9.111713 11.96855 lwhitemg | -1.001386 .0742797 -13.48 0.000 -1.146971 -.8558005 _cons | 49.54151 13.59756 3.64 0.000 22.89077 76.19224 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .00164 lgdp | -.000511 .002857 lgdpau | .003399 -.003592 .119495 lgdpdfrati~w | -.001301 -.00067 -.003808 .017244 lpopau | -.020993 .02282 -.425295 .010661 1.68056 lpop | -.000643 -.002159 -.000484 .001 -.007849 .006547 lxrate1 | .000078 .000108 .001517 .000797 -.008322 -.000366 .000543 lremote | .002257 .001996 -.011732 -.005736 .033288 -.002642 -.00029 .022829 ldist | .004038 -.004765 -.000685 -.000884 -.069148 .01329 .000983 .017877 .15655 lopen | .0004 -.000424 .000119 -.000752 -.003762 .000213 -.00017 .000464 .001147 english | -.002003 .000546 -.002388 .003703 .002533 .00583 .001094 -.002433 .014518 white | .006626 -.003032 .025239 -.000248 -.164447 .009164 .003808 .005755 -.029121 lwhitemg | -.000725 -.000207 -.003084 .000198 .016401 -.000276 -.000385 .000073 .00576 _cons | .213722 -.286534 4.0972 -.030547 -16.6141 -.011069 .091323 -.626451 -.615549</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000377 english | -.000939 .045639 white | .000539 .047177 .531145 lwhitemg | -.000018 -.00202 -.051272 .005517 _cons | .050082 -.224012 2.12712 -.230191 184.894</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3219.02 Log likelihood = -593.5572 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1374692 .0324804 4.23 0.000 .0738088 .2011296 lgdp | .2700827 .0555976 4.86 0.000 .1611134 .3790519 lgdpau | -.1236487 .067354 -1.84 0.066 -.2556601 .0083626 lgdpdfrati~w | -.1319195 .0443626 -2.97 0.003 -.2188685 -.0449705 lpopau | 2.649922 .2746441 9.65 0.000 2.111629 3.188214 lpop | .7702596 .1017661 7.57 0.000 .5708017 .9697176 lxrate1 | -.0125568 .0087629 -1.43 0.152 -.0297317 .0046181 lremote | .1503049 .0342075 4.39 0.000 .0832595 .2173503 ldist | -3.226607 .3520282 -9.17 0.000 -3.91657 -2.536645 lopen | -.0096735 .031642 -0.31 0.760 -.0716908 .0523438 english | .776768 .2801212 2.77 0.006 .2277406 1.325796 white | 23.81469 3.035656 7.84 0.000 17.86491 29.76446 lwhitemg | -2.215677 .2868336 -7.72 0.000 -2.77786 -1.653493 _cons | -24.40038 5.284477 -4.62 0.000 -34.75776 -14.04299 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001055 lgdp | -.000628 .003091 lgdpau | -.00073 -.000469 .004537 lgdpdfrati~w | .000364 -.001207 .000915 .001968 lpopau | .005041 -.000175 -.015534 .00034 .075429 lpop | -.000243 -.002377 .001301 .000542 -.004904 .010356 lxrate1 | 8.7e-06 .000088 -.000051 .000037 .000743 -.000241 .000077 lremote | -.000362 .001297 -.000731 -.001111 8.5e-06 -.000775 .000037 .00117 ldist | .003735 -.000262 -.003345 .000032 .022878 -.002182 -.000112 -.000066 .123924 lopen | -.00037 -.00025 .000251 -.000484 -.004604 .001145 -.000187 .000231 -.000858 english | -.00072 -.000509 .000845 .000412 -.006333 .000518 .000045 -.000383 .057669 white | .00325 -.005796 .000875 .002067 -.000552 .029745 -.000601 -.00253 .011555 lwhitemg | -.000582 .00011 .000215 -.000078 -.002247 -.003074 .000055 .00011 -.003881 _cons | -.085555 -.023051 .170953 -.005701 -1.01136 -.033161 -.008941 -.004698 -1.46058</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001001 english | -.000023 .078468 white | .001462 .027379 9.21521 lwhitemg | 4.2e-06 -.001541 -.85743 .082274 _cons | .067723 -.477696 -.483477 .118424 27.9257</p><p>. . . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 523.48 Log likelihood = -548.1348 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5334269 .049988 10.67 0.000 .4354523 .6314015 lgdp | -.0008857 .0767782 -0.01 0.991 -.1513683 .1495969 lgdpau | 2.071311 .7930406 2.61 0.009 .5169803 3.625642 lgdpdfrati~w | -.7038911 .2852919 -2.47 0.014 -1.263053 -.1447293 lpopau | -10.27812 2.725575 -3.77 0.000 -15.62014 -4.936088 lpop | .362242 .093998 3.85 0.000 .1780093 .5464746 lxrate1 | -.1127222 .0261451 -4.31 0.000 -.1639656 -.0614789 lremote | .0066571 .2542585 0.03 0.979 -.4916805 .5049947 ldist | -1.52016 .3243997 -4.69 0.000 -2.155972 -.8843486 lopen | .0439066 .0543593 0.81 0.419 -.0626357 .1504488 english | -.0785377 .2368967 -0.33 0.740 -.5428467 .3857712 white | 9.383766 1.123252 8.35 0.000 7.182232 11.5853 lwhitemg | -.8483653 .1007906 -8.42 0.000 -1.045911 -.6508193 _cons | 127.9287 25.85871 4.95 0.000 77.24658 178.6109 ------. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002499 lgdp | -.001522 .005895 lgdpau | .000362 -.000448 .628913 lgdpdfrati~w | -.001421 .001555 -.019056 .081391 lpopau | -.005542 -.004844 -2.10063 .076133 7.42876 lpop | -.000235 -.003899 -.000346 -.000756 -.001263 .008836 lxrate1 | .000152 -.000192 .000402 .000839 -.004172 -.000434 .000684 lremote | .001744 .004224 -.021086 -.01259 .05793 -.002935 .000457 .064647 ldist | .005063 .001263 -.009237 -.003667 -.009937 .002745 .000911 .030708 .105235 lopen | -.000262 .000642 .000454 -.000503 -.010603 .000729 -.000017 .001259 .001944 english | -.001923 .001108 .003766 .005328 -.018923 -.000154 .001316 -.010648 .026967 white | .012965 -.024409 .018587 -.006151 -.084569 .028149 .00574 .017983 -.007223 lwhitemg | -.001265 .00123 -.003018 -.000159 .014596 -.001691 -.000443 .000728 .001436 _cons | .040667 -.018423 18.6477 -.720325 -68.4603 -.020681 .053135 -1.30833 -.968072</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002955 english | -.000319 .05612 white | -.001112 .015624 1.2617 lwhitemg | .000046 -.000135 -.108639 .010159 _cons | .112879 .011179 .786462 -.171003 668.673</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1654.38 Log likelihood = -326.9527 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0523704 .0190146 2.75 0.006 .0151024 .0896384 lgdp | .214912 .0556748 3.86 0.000 .1057914 .3240325 lgdpau | -.1076629 .3537492 -0.30 0.761 -.8009985 .5856728 lgdpdfrati~w | -.4481144 .1976721 -2.27 0.023 -.8355445 -.0606842 lpopau | 1.859957 1.248641 1.49 0.136 -.587335 4.307249 lpop | .1098579 .0717602 1.53 0.126 -.0307895 .2505054 lxrate1 | -.05795 .0182059 -3.18 0.001 -.0936328 -.0222671 lremote | -.1942601 .1163976 -1.67 0.095 -.4223953 .033875 ldist | -1.376286 .1431765 -9.61 0.000 -1.656907 -1.095665 lopen | -.0269968 .0243867 -1.11 0.268 -.0747938 .0208001 english | 2.083308 .1975593 10.55 0.000 1.696099 2.470517 white | 8.274286 1.189132 6.96 0.000 5.943631 10.60494 lwhitemg | -.5812291 .1126841 -5.16 0.000 -.8020859 -.3603722 _cons | -18.36732 12.33939 -1.49 0.137 -42.55209 5.81745 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000362 lgdp | -.000347 .0031 lgdpau | .000213 -.001513 .125138 lgdpdfrati~w | -.000645 -.000035 -.001498 .039074 lpopau | -.001065 .005295 -.426978 .022452 1.55911 lpop | .00004 -.002899 .000883 .000673 -.006499 .00515 lxrate1 | -.000017 .000169 .001276 .000698 -.006016 -.000166 .000331 lremote | .000193 .001241 -.008672 -.003724 .031053 -.000782 -.000468 .013548 ldist | .000712 .001117 -.000514 -.002258 -.000764 .001232 -.000311 -.00131 .0205 lopen | .000015 -.000232 .000356 .00095 -.002156 .00029 -9.5e-06 -.000073 -.000162 english | -.000499 -.004084 .006084 .002796 -.019643 .005035 .000423 -.007025 .001631 white | .001681 -.024896 .011967 -.000912 -.057503 .03015 -.000059 -.000625 -.007779 lwhitemg | -.000183 .001604 -.001106 .000305 .005089 -.002291 .000019 .000642 -.000892 _cons | .009656 -.091007 3.89563 -.330797 -14.9451 .063943 .070455 -.402501 -.198933</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000595 english | -.000361 .03903 white | .000612 .088815 1.41403 lwhitemg | .000014 -.007912 -.130102 .012698 _cons | .028607 .216106 .779189 -.051021 152.261</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1049.99 Log likelihood = -843.4196 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1297805 .0642737 2.02 0.043 .0038063 .2557547 lgdp | .5256299 .1083781 4.85 0.000 .3132129 .738047 lgdpau | -2.246376 1.083564 -2.07 0.038 -4.370123 -.1226289 lgdpdfrati~w | -1.019317 .4380333 -2.33 0.020 -1.877847 -.1607879 lpopau | 4.858502 3.714765 1.31 0.191 -2.422304 12.13931 lpop | .2593488 .1236444 2.10 0.036 .0170102 .5016873 lxrate1 | -.1640029 .0402326 -4.08 0.000 -.2428574 -.0851484 lremote | 1.539147 .2850687 5.40 0.000 .9804229 2.097872 ldist | -1.847338 .4765575 -3.88 0.000 -2.781373 -.9133024 lopen | .0040419 .0741026 0.05 0.957 -.1411965 .1492803 english | .1117897 .2640528 0.42 0.672 -.4057442 .6293237 white | 11.80425 1.618256 7.29 0.000 8.63253 14.97598 lwhitemg | -.9749635 .1694457 -5.75 0.000 -1.307071 -.642856 _cons | -29.45605 34.98472 -0.84 0.400 -98.02485 39.11275 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .004131 lgdp | -.004242 .011746 lgdpau | -.002134 .005373 1.17411 lgdpdfrati~w | -.001863 .004464 .000769 .191873 lpopau | .003635 -.026402 -3.92486 .044828 13.7995 lpop | .001323 -.009918 -.001665 -.002379 .008771 .015288 lxrate1 | .000098 .001671 .000541 .001355 -.00837 -.001681 .001619 lremote | .001781 -.002514 -.036441 -.02266 .098655 .001262 .001434 .081264 ldist | .011955 -.01028 -.011293 -.011629 .003558 .014016 -.002202 .024026 .227107 lopen | .00032 -.00082 .00664 .000815 -.033348 .002085 -.000388 .002399 .004077 english | -.005268 .011172 .003655 -.000333 -.01427 -.009577 .000036 .002263 .025498 white | .021976 -.052556 -.01213 -.026878 -.046441 .062951 -.001683 .069732 .098581 lwhitemg | -.002406 .003361 -.003956 -.00054 .025495 -.004367 .000059 .001931 -.012598 _cons | -.078869 .319608 34.6547 -.707191 -126.539 -.259844 .114673 -1.5834 -2.17217</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005491 english | -.000906 .069724 white | .006856 -.028754 2.61875 lwhitemg | -.000686 .0026 -.261719 .028712 _cons | .308816 -.212283 -.358773 -.211729 1223.93</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 580.25 Log likelihood = -123.9382 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0435222 .0291951 1.49 0.136 -.0136991 .1007435 lgdp | .1263176 .0601068 2.10 0.036 .0085105 .2441248 lgdpau | .2989716 .4229197 0.71 0.480 -.5299359 1.127879 lgdpdfrati~w | .3553838 .1883922 1.89 0.059 -.0138582 .7246257 lpopau | 2.665812 1.486464 1.79 0.073 -.2476031 5.579227 lpop | .322971 .0812208 3.98 0.000 .1637812 .4821608 lxrate1 | -.0212639 .0161442 -1.32 0.188 -.0529059 .0103781 lremote | -.0515016 .1328894 -0.39 0.698 -.3119601 .2089569 ldist | -2.08309 .4470924 -4.66 0.000 -2.959375 -1.206805 lopen | .0342619 .0355247 0.96 0.335 -.0353653 .103889 english | 1.049133 .2037814 5.15 0.000 .6497285 1.448537 white | 14.67589 1.387561 10.58 0.000 11.95632 17.39546 lwhitemg | -1.186951 .1381241 -8.59 0.000 -1.457669 -.9162324 _cons | -39.74838 15.32545 -2.59 0.009 -69.78571 -9.711044 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000852 lgdp | -.000645 .003613 lgdpau | -.000511 -.000068 .178861 lgdpdfrati~w | -.000663 .000759 -.00086 .035492 lpopau | .001317 .000774 -.600047 .018169 2.20957 lpop | -.000105 -.002744 .000311 .000721 -.003569 .006597 lxrate1 | .000055 .000076 .000196 .000549 -.002626 -.000092 .000261 lremote | .000868 .002063 -.007987 -.002935 .023692 -.001585 .000052 .01766 ldist | .002866 -.005548 -.01133 -.006309 .011539 .010344 .000029 .018181 .199892 lopen | -.000051 6.6e-06 .000401 .00036 -.004406 .000459 -.000049 .000048 -.00002 english | -.001174 -.001837 .002035 .003124 -.006296 .00552 .000198 -.004647 .016749 white | .003817 -.015763 .036018 -.006378 -.290833 .024281 .003348 -.007328 -.026128 lwhitemg | -.000453 .000762 -.003984 .000497 .030295 -.0018 -.000357 .000951 .003969 _cons | -.031138 -.010855 5.43849 -.256634 -21.2077 -.076841 .035823 -.532323 -2.01565</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001262 english | -.000094 .041527 white | -.000102 .032339 1.92533 lwhitemg | .00002 -.002153 -.187397 .019078 _cons | .055861 -.121005 4.13019 -.429785 234.869</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 249.73 Log likelihood = 135.6087 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0057813 .0195717 0.30 0.768 -.0325785 .0441412 lgdp | .2590776 .0507209 5.11 0.000 .1596664 .3584887 lgdpau | -.3077517 .3535816 -0.87 0.384 -1.000759 .3852555 lgdpdfrati~w | -.0982163 .1429167 -0.69 0.492 -.3783279 .1818953 lpopau | 4.254485 1.288274 3.30 0.001 1.729514 6.779455 lpop | -.0684615 .0614505 -1.11 0.265 -.1889022 .0519792 lxrate1 | -.0947932 .0152559 -6.21 0.000 -.1246941 -.0648922 lremote | .3251191 .1306186 2.49 0.013 .0691114 .5811269 ldist | -1.33333 .2846948 -4.68 0.000 -1.891321 -.7753384 lopen | .0193849 .0291623 0.66 0.506 -.0377721 .076542 english | .2642521 .166186 1.59 0.112 -.0614664 .5899707 white | 9.382888 2.506151 3.74 0.000 4.470923 14.29485 lwhitemg | -.7755829 .2489963 -3.11 0.002 -1.263607 -.2875591 _cons | -56.49043 13.673 -4.13 0.000 -83.28901 -29.69185 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000383 lgdp | -.000345 .002573 lgdpau | .000248 -.000693 .12502 lgdpdfrati~w | -.000426 .000464 -.006159 .020425 lpopau | -.002464 .004521 -.429415 .027476 1.65965 lpop | -5.0e-06 -.002182 -.000117 -.000104 -.000139 .003776 lxrate1 | 2.4e-06 -4.0e-06 .000503 .000474 -.004575 -.000102 .000233 lremote | .00033 .001736 -.008107 -.001173 .028005 -.001416 -.000067 .017061 ldist | .001716 -.001324 -.002484 -.00149 .002211 .004082 .000067 .007651 .081051 lopen | -9.8e-06 .00003 .000095 .000167 -.001715 .000163 -.000026 .0001 -.000432 english | -.000514 -.001632 -.000077 .000756 .020466 .004361 .000196 -.001217 .014694 white | .002233 -.014309 .022761 -.004448 -.176612 .014884 .002086 -.003437 .004138 lwhitemg | -.000268 .000837 -.002691 .000435 .017905 -.001119 -.000153 .001037 -.00132 _cons | .021696 -.080568 3.95854 -.299786 -16.6346 -.031945 .062829 -.4901 -.857575</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00085 english | -.000396 .027618 white | -.000606 .023094 6.28079 lwhitemg | .000071 -.001949 -.615886 .061999 _cons | .026479 -.504103 2.38767 -.222457 186.951 . xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 497.72 Log likelihood = -664.2044 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1768853 .05314 3.33 0.001 .0727329 .2810376 lgdp | .7429416 .1040117 7.14 0.000 .5390824 .9468009 lgdpau | -.6971969 .6807035 -1.02 0.306 -2.031351 .6369574 lgdpdfrati~w | -.3192683 .279874 -1.14 0.254 -.8678113 .2292748 lpopau | 4.137204 2.345857 1.76 0.078 -.460591 8.734998 lpop | -.2691949 .1482055 -1.82 0.069 -.5596723 .0212825 lxrate1 | -.1392666 .0314126 -4.43 0.000 -.2008342 -.077699 lremote | .1696736 .2370148 0.72 0.474 -.2948668 .634214 ldist | -3.077528 .691404 -4.45 0.000 -4.432655 -1.722401 lopen | .0300183 .0653535 0.46 0.646 -.0980721 .1581088 english | -.1950759 .4434575 -0.44 0.660 -1.064237 .6740847 white | 16.87624 4.613077 3.66 0.000 7.834775 25.9177 lwhitemg | -1.357054 .4554818 -2.98 0.003 -2.249782 -.4643257 _cons | -32.27859 23.12584 -1.40 0.163 -77.60441 13.04723 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002824 lgdp | -.002336 .010818 lgdpau | .001443 -.00149 .463357 lgdpdfrati~w | -.001801 .003326 -.012115 .078329 lpopau | -.009455 .000322 -1.54288 .065578 5.50304 lpop | -.000167 -.007884 -.001638 -.001808 -.006242 .021965 lxrate1 | .000152 .000475 .001974 .001222 -.010489 -.000773 .000987 lremote | .001002 .004421 -.021011 -.012245 .041321 -.002804 .000523 .056176 ldist | .011335 .011115 -.006203 -.004269 -.052509 .006562 .000551 .032795 .478039 lopen | .000451 -.000992 -.000714 -.000087 -.011317 .001862 -.000189 .00064 .002989 english | -.006322 .002697 -.000172 .005594 -.010363 .018963 .0008 -.002953 .133994 white | .00958 -.029664 .161382 .024608 -.500893 .063792 .002375 .004916 .167033 lwhitemg | -.001557 .000775 -.017801 -.003994 .057557 -.004311 -.000198 .003074 -.027891 _cons | .046209 -.223812 13.7382 -.744887 -50.5888 -.059317 .107983 -.989968 -4.24335</p><p>| lopen english white lwhitemg _cons ------+------lopen | .004271 english | -.00175 .196655 white | .008519 .152302 21.2805 lwhitemg | -.000851 -.013594 -2.05761 .207464 _cons | .167325 -1.45489 1.96324 -.182753 534.805</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1175.44 Log likelihood = -576.6353 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2149346 .0474422 4.53 0.000 .1219497 .3079196 lgdp | .541306 .0956998 5.66 0.000 .3537378 .7288742 lgdpau | .7909604 .6860747 1.15 0.249 -.5537212 2.135642 lgdpdfrati~w | -.074485 .2939281 -0.25 0.800 -.6505735 .5016035 lpopau | -3.363428 2.374389 -1.42 0.157 -8.017145 1.290288 lpop | .5807087 .1179361 4.92 0.000 .3495581 .8118593 lxrate1 | -.0797496 .0297749 -2.68 0.007 -.1381073 -.0213919 lremote | -.2554966 .2435263 -1.05 0.294 -.7327993 .2218061 ldist | -2.196152 .432636 -5.08 0.000 -3.044103 -1.348201 lopen | -.1154077 .0746391 -1.55 0.122 -.2616977 .0308824 english | 1.076851 .317179 3.40 0.001 .455192 1.698511 white | 24.44467 3.235139 7.56 0.000 18.10392 30.78543 lwhitemg | -2.308337 .2958286 -7.80 0.000 -2.888151 -1.728524 _cons | 39.70182 22.7592 1.74 0.081 -4.905383 84.30903 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002251 lgdp | -.001958 .009158 lgdpau | -.002107 .004904 .470698 lgdpdfrati~w | -.00194 .00311 -.021038 .086394 lpopau | .006172 -.033288 -1.57636 .070584 5.63772 lpop | .000284 -.006799 -.002905 -.002041 .013435 .013909 lxrate1 | .000042 .000671 .000659 .001504 -.007193 -.000834 .000887 lremote | .000563 .004064 -.014421 -.018336 .030378 -.003085 .000354 .059305 ldist | .008346 -.002041 -.008544 -.002107 -.002268 .012475 .00021 .006738 .187174 lopen | .000242 -.000324 .00006 .002582 -.011501 .001874 -.000055 .001436 .002323 english | -.002999 .00062 .004313 .005416 -.01758 .001032 .000634 -.010219 .056489 white | .006413 -.027088 .034139 -.014691 -.085874 .050718 .00364 .041974 .035477 lwhitemg | -.000939 .000785 -.004732 -.000405 .016987 -.003783 -.000364 -.000495 -.008091 _cons | -.10126 .31421 13.9729 -.555681 -51.9768 -.30193 .090522 -.735159 -1.77914</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005571 english | -.002197 .100602 white | .00791 .001677 10.4661 lwhitemg | -.000753 .001487 -.94005 .087515 _cons | .132072 -.318275 -.419341 -.027615 517.981</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1875.50 Log likelihood = -765.7125 Prob > chi2 = 0.0000 ------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0955005 .0360009 2.65 0.008 .02494 .1660611 lgdp | .9681142 .0972557 9.95 0.000 .7774966 1.158732 lgdpau | .833151 .7071831 1.18 0.239 -.5529024 2.219204 lgdpdfrati~w | -.1182447 .2822381 -0.42 0.675 -.6714213 .4349319 lpopau | 3.384109 2.45725 1.38 0.168 -1.432012 8.200231 lpop | -.4025201 .142939 -2.82 0.005 -.6826755 -.1223648 lxrate1 | -.1457258 .0222992 -6.54 0.000 -.1894315 -.1020202 lremote | -.3416663 .1926449 -1.77 0.076 -.7192433 .0359108 ldist | -1.249834 .7663014 -1.63 0.103 -2.751758 .2520886 lopen | -.083254 .0745316 -1.12 0.264 -.2293332 .0628253 english | .2149472 .3557216 0.60 0.546 -.4822544 .9121488 white | 26.12057 4.174913 6.26 0.000 17.93789 34.30325 lwhitemg | -2.375914 .4377964 -5.43 0.000 -3.23398 -1.517849 _cons | -76.09738 24.58823 -3.09 0.002 -124.2894 -27.90534 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist</p><p>------+------limmig | .001296 lgdp | -.002046 .009459 lgdpau | -.000967 .002783 .500108 lgdpdfrati~w | -.002218 .004658 -.01635 .079658 lpopau | -.00452 -.012926 -1.66412 .062152 6.03808 lpop | .001874 -.011603 -.0061 -.004511 .031177 .020432 lxrate1 | .000067 .000294 .000332 .000734 -.008811 -.000637 .000497 lremote | .001713 .003293 -.017276 -.004863 .011764 -.002063 .000396 .037112 ldist | .008279 .010208 -.031087 -.005719 -.058695 .014487 .001753 .072942 .587218 lopen | .000309 -.000915 -.000311 .004596 -.008079 .001264 -.000358 .000982 .000694 english | -.000984 .003182 .000837 .002465 -.007769 -.000404 .00094 .002337 .074961 white | .009446 -.062277 .044722 -.022995 -.113751 .070131 .002231 -.025217 -.323101 lwhitemg | -.00064 .004409 -.006554 .001163 .015255 -.005066 -.000126 .004338 .030064 _cons | .018455 -.01104 14.9866 -.6085 -56.2854 -.53877 .117409 -.810271 -4.97306</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005555</p><p> english | -.001849 .126538 white | .001021 -.003853 17.4299 lwhitemg | -6.2e-06 .000083 -1.81505 .191666 _cons | .127341 -.707083 4.28961 -.424306 604.581</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 538.66 Log likelihood = -579.4465 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3969151 .0582854 6.81 0.000 .2826779 .5111523 lgdp | .2898127 .0985515 2.94 0.003 .0966554 .48297 lgdpau | 1.185084 .7544304 1.57 0.116 -.2935729 2.66374 lgdpdfrati~w | -.5316353 .3192582 -1.67 0.096 -1.15737 .0940992 lpopau | -4.729325 2.605298 -1.82 0.069 -9.835615 .3769642 lpop | .3300364 .1055108 3.13 0.002 .123239 .5368337 lxrate1 | -.0873857 .0344519 -2.54 0.011 -.1549101 -.0198613 lremote | -.0143732 .2312264 -0.06 0.950 -.4675686 .4388221 ldist | -1.343693 .580563 -2.31 0.021 -2.481576 -.2058107 lopen | .101332 .0720214 1.41 0.159 -.0398273 .2424913 english | -.1008651 .2840222 -0.36 0.722 -.6575384 .4558081 white | 20.69667 2.790943 7.42 0.000 15.22653 26.16682 lwhitemg | -1.974219 .2861634 -6.90 0.000 -2.535089 -1.413349 _cons | 51.38667 24.69361 2.08 0.037 2.988086 99.78525 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .003397 lgdp | -.00319 .009712 lgdpau | -.002247 .006346 .569165 lgdpdfrati~w | -.002532 .005902 -.010675 .101926 lpopau | .00481 -.03428 -1.90414 .053666 6.78758 lpop | .001038 -.006294 -.003756 -.003921 .009432 .011133 lxrate1 | .000341 .000463 -.00035 .000875 -.003465 -.00065 .001187 lremote | .000222 .002843 -.010904 -.017179 .003452 .000489 .001616 .053466 ldist | .011103 .000826 -.007059 -.011342 -.062946 .005896 .000736 .038635 .337053 lopen | -.000307 .000782 .00235 .000174 -.023476 .00174 -.000181 .002139 .003036 english | -.003554 .006996 .003724 .001513 -.01703 -.001017 -.001496 .00931 .093958 white | .017531 -.031019 .071771 -.04794 -.220968 .033944 -.006608 .053077 .118539 lwhitemg | -.002009 .001347 -.009869 .001731 .036747 -.002475 .000382 -.001217 -.020107 _cons | -.091992 .26111 16.7604 -.512406 -61.5719 -.15347 .040274 -.672941 -2.4942</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005187 english | -.000494 .080669 white | .005635 .054632 7.78936 lwhitemg | -.000773 -.00719 -.787562 .081889 _cons | .241398 -.924089 .273184 -.127846 609.774</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1533.15 Log likelihood = -277.0036 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0014769 .0241081 0.06 0.951 -.0457741 .0487279 lgdp | .4250867 .0830131 5.12 0.000 .2623841 .5877893 lgdpau | -.3950659 .5112325 -0.77 0.440 -1.397063 .6069313 lgdpdfrati~w | .1531802 .2312302 0.66 0.508 -.3000227 .6063831 lpopau | 1.478085 1.762663 0.84 0.402 -1.976671 4.932841 lpop | -.2050643 .1167217 -1.76 0.079 -.4338346 .023706 lxrate1 | -.0391653 .0231349 -1.69 0.090 -.0845089 .0061782 lremote | -.0035268 .1730421 -0.02 0.984 -.3426832 .3356296 ldist | -3.761239 .5255437 -7.16 0.000 -4.791286 -2.731192 lopen | .0145071 .0517268 0.28 0.779 -.0868756 .1158897 english | -.0808905 .3269418 -0.25 0.805 -.7216847 .5599037 white | 14.35931 3.162921 4.54 0.000 8.160098 20.55852 lwhitemg | -.9663833 .3434985 -2.81 0.005 -1.639628 -.2931386 _cons | 16.69222 17.615 0.95 0.343 -17.83254 51.21699 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000581 lgdp | -.000748 .006891 lgdpau | .000204 -.001994 .261359 lgdpdfrati~w | -.000907 .002448 -.010205 .053467 lpopau | -.001603 .000243 -.872667 .052331 3.10698 lpop | .000252 -.006327 -.000225 -.000938 -.001024 .013624 lxrate1 | -.000019 .000142 .001418 .001072 -.00691 -.00049 .000535 lremote | .000134 .002093 -.017329 -.003856 .050018 -.002294 -.000123 .029944 ldist | .002569 .001964 -.009444 -.001418 -.014557 .020338 -.000213 .013237 .276196 lopen | .00004 -.000068 -.002127 .001077 .002224 .000776 -.000053 .000215 .00038 english | -.001053 -.001324 .003312 .001764 -.004288 .007389 .000812 -.00076 .073464 white | .004569 -.0367 .054942 -.003734 -.29801 .060339 .002254 -.017067 .146969 lwhitemg | -.000482 .001459 -.006579 -.000477 .036201 -.00468 -.000035 .004583 -.018529 _cons | .006679 -.04047 7.9114 -.648408 -28.9673 -.222852 .081605 -.771225 -2.65824</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002676 english | -.000622 .106891 white | -.001719 .100621 10.0041 lwhitemg | .000208 -.009411 -1.0761 .117991 _cons | .003168 -.813413 2.07827 -.24763 310.288</p><p>. . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. . *Dropping Guinea-Bisau . drop if ccode==163240 (10 observations deleted)</p><p>. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist open english gdpdfration > ew white whitemg, stat(n mean sd median min max) col(stat) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 491197.4 1561183 8397.5 0 1.39e+07 immig | 1000 33462.02 117038.5 2986.5 0 1137050 gdp | 1000 2.79e+11 9.69e+11 1.74e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.6973 16.9395 102.7439 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.96e+07 1.54e+08 1.04e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1040.992 10901.88 13.89535 .0068 270182.6 remote | 1000 6733.485 4145.89 6764 1293 39620 dist | 1000 13333.85 3514.172 14215 2409 17972 open | 1000 .7095294 .389513 .6384 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.052499 .1815139 1.015772 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" countries)--RHS Variables > : . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist phone open eng > lish gdpdfrationew white whitemg, stat(n mean sd median min max) col(stat) ------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 404946.6 1597577 3443.5 0 1.39e+07 immig | 870 14896.97 27125.08 1606 0 158613 gdp | 870 2.37e+11 1.00e+12 1.09e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.8245 17.3007 101.6682 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.35e+07 1.65e+08 1.07e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1180.549 11681.95 19.96485 .0068 270182.6 remote | 870 7158.98 4116.81 6927 1293 39620 dist | 870 13158.91 3398.218 14040 2410 17972 phone | 870 159.2907 241.8643 49.865 .54 1449.75 open | 870 .717139 .4109572 .6373 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.04406 .1864499 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8114.92 Log likelihood = -526.5259 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3509804 .0309416 11.34 0.000 .290336 .4116248 lgdp | 1.198916 .0329359 36.40 0.000 1.134363 1.263469 lgdpau | .0992335 .6092098 0.16 0.871 -1.094796 1.293263 lgdpdfrati~w | -.9307348 .2474573 -3.76 0.000 -1.415742 -.4457273 lpopau | -2.623754 2.100772 -1.25 0.212 -6.741191 1.493684 lpop | .0262654 .0400439 0.66 0.512 -.0522193 .1047501 lxrate1 | -.132808 .0171852 -7.73 0.000 -.1664903 -.0991257 lremote | -.4476398 .0734735 -6.09 0.000 -.5916453 -.3036344 ldist | -2.119031 .168057 -12.61 0.000 -2.448416 -1.789645 lopen | .3145064 .0574882 5.47 0.000 .2018317 .4271812 english | .9356267 .1222657 7.65 0.000 .6959903 1.175263 white | 4.76602 .5591177 8.52 0.000 3.670169 5.861871 lwhitemg | -.4500186 .0497992 -9.04 0.000 -.5476232 -.352414 _cons | 43.13112 19.40328 2.22 0.026 5.101397 81.16084 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000957 lgdp | -.000307 .001085 lgdpau | -.000857 .00134 .371137 lgdpdfrati~w | -.000739 .000066 -.009083 .061235 lpopau | .001473 -.008041 -1.25369 .047821 4.41324 lpop | -.000136 -.000727 -3.9e-06 .000149 .000396 .001604 lxrate1 | .000075 .000139 .000264 .00018 -.002035 -.000067 .000295 lremote | .000489 .000186 -.000127 -.001568 -.005094 -.000181 .000178 .005398 ldist | .001471 .000704 -.00016 -.001169 -.009735 .000462 .001994 .006063 .028243 lopen | -.000134 .000646 .002488 .000668 -.017955 .000228 .000085 .001461 .000321 english | -.001112 .002596 .002445 .001681 -.009137 -.001288 .000462 -.002641 .002455 white | .004801 -.001301 .00315 -.010869 -.027735 .004205 .000404 -.000641 .002867 lwhitemg | -.00058 .000131 -.00027 .001016 .002933 -.000316 -.000044 .000101 -.000501 _cons | -.017414 .076459 11.047 -.593821 -40.0745 -.016184 .002445 -.017572 -.194017</p><p>| lopen english white lwhitemg _cons ------+------lopen | .003305 english | -.000733 .014949 white | -.000689 .003086 .312613 lwhitemg | -.000028 -.000069 -.027466 .00248 _cons | .200596 .042753 .278623 -.031197 376.487</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 55206.65 Log likelihood = -956.5316 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0517949 .0142908 3.62 0.000 .0237855 .0798043 lgdp | 1.601099 .0529635 30.23 0.000 1.497292 1.704905 lgdpau | .8658322 .364675 2.37 0.018 .1510824 1.580582 lgdpdfrati~w | -.4264911 .1527737 -2.79 0.005 -.725922 -.1270602 lpopau | -6.340832 1.231939 -5.15 0.000 -8.755388 -3.926276 lpop | -.3231129 .085682 -3.77 0.000 -.4910465 -.1551794 lxrate1 | -.1207528 .0205137 -5.89 0.000 -.1609588 -.0805468 lremote | -.9745984 .1006307 -9.68 0.000 -1.171831 -.7773659 ldist | -3.300297 .1698179 -19.43 0.000 -3.633134 -2.96746 lopen | -.0501898 .0271821 -1.85 0.065 -.1034657 .0030862 english | 1.005994 .0889267 11.31 0.000 .8317006 1.180287 white | 4.900032 .7641597 6.41 0.000 3.402307 6.397758 lwhitemg | -.4871559 .0726125 -6.71 0.000 -.6294737 -.344838 _cons | 95.95317 11.58514 8.28 0.000 73.24671 118.6596 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000204 lgdp | -.000282 .002805 lgdpau | -.001258 .001775 .132988 lgdpdfrati~w | -.000615 .000444 -.012448 .02334 lpopau | .005006 -.007764 -.439749 .025477 1.51767 lpop | .000169 -.004224 -.001458 .000516 .004386 .007341 lxrate1 | -.000029 .000307 -.00003 .000422 -.003271 -.000341 .000421 lremote | .000394 .000661 -.006673 -.00372 .023034 -.001379 .000071 .010127 ldist | .000608 -.000959 -.006536 -.001915 .015638 .002007 .000556 .005149 .028838 lopen | .000045 -.000107 -.001008 .000945 .003691 .000282 -.000075 .000642 .00026 english | -.000441 .000334 .00325 .002629 -.020976 .000279 .001118 -.002634 .002706 white | .001249 -.014506 -.010049 -.002663 .042419 .021555 -.001194 .003214 -.024724 lwhitemg | -.000105 .000822 .000399 .000081 -.002699 -.001137 .000152 .000373 .003353 _cons | -.055881 .088415 3.92743 -.083495 -13.9245 -.061093 .045793 -.336903 -.425373</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000739 english | -.000403 .007908 white | .001838 -.002239 .58394 lwhitemg | -.000135 .000406 -.053944 .005273 _cons | -.045584 .242762 -.236581 -.002506 134.215</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7456.89 Log likelihood = -926.9251 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .201454 .030622 6.58 0.000 .141436 .2614719 lgdp | 1.638886 .073559 22.28 0.000 1.494713 1.783059 lgdpau | -.0330655 .6246571 -0.05 0.958 -1.257371 1.19124 lgdpdfrati~w | -.2293643 .2611691 -0.88 0.380 -.7412464 .2825178 lpopau | -1.857945 2.175642 -0.85 0.393 -6.122125 2.406235 lpop | -.5436258 .0805823 -6.75 0.000 -.7015643 -.3856873 lxrate1 | -.156112 .0287098 -5.44 0.000 -.2123822 -.0998418 lremote | -.3890459 .1302059 -2.99 0.003 -.6442448 -.1338471 ldist | -3.240319 .3403597 -9.52 0.000 -3.907412 -2.573227 lopen | .1146388 .0490299 2.34 0.019 .0185419 .2107357 english | .870778 .1393673 6.25 0.000 .597623 1.143933 white | 9.504274 1.835693 5.18 0.000 5.90638 13.10217 lwhitemg | -.8318209 .1835752 -4.53 0.000 -1.191622 -.4720201 _cons | 41.14934 20.63608 1.99 0.046 .7033782 81.59531 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000938 lgdp | -.001409 .005411 lgdpau | -.001883 .003929 .390197 lgdpdfrati~w | -.001239 .002979 -.025415 .068209 lpopau | .005034 -.021105 -1.31784 .091365 4.73342 lpop | .00089 -.004407 -.002081 -.001922 .010153 .006494 lxrate1 | .000079 .000455 .000048 .001194 -.005989 -.000731 .000824 lremote | -.000044 -.00029 -.005135 -.00124 .010103 -.001078 .000152 .016954 ldist | .004228 .00309 -.011188 -.002954 -.013684 .000467 .001715 .00949 .115845 lopen | .000123 -.000662 .000999 .001761 -.006097 .001336 -.000225 .000429 -.000957 english | -.001472 .00368 .003661 .004164 -.020852 .000036 .001919 -.004549 .001709 white | .001427 -.026969 .011708 -.000139 -.008544 .020629 .004188 .011532 -.138422 lwhitemg | -.00011 .001465 -.002148 -.000529 .006141 -.001327 -.000433 .000832 .011846 _cons | -.05963 .171167 11.7581 -.914415 -43.727 -.111805 .076755 -.248956 -.767927</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002404 english | -.001579 .019423 white | .003486 .01173 3.36977 lwhitemg | -.000249 -.001801 -.330643 .0337 _cons | .074487 .181096 1.29807 -.174938 425.848</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2503.48 Log likelihood = -1092.916 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1025432 .0352133 2.91 0.004 .0335265 .17156 lgdp | .9505767 .0701557 13.55 0.000 .813074 1.088079 lgdpau | -.3934879 .8168367 -0.48 0.630 -1.994458 1.207483 lgdpdfrati~w | -.379297 .3278162 -1.16 0.247 -1.021805 .2632109 lpopau | .2876713 2.794657 0.10 0.918 -5.189755 5.765098 lpop | -.031222 .086837 -0.36 0.719 -.2014194 .1389754 lxrate1 | -.1585725 .0309876 -5.12 0.000 -.219307 -.097838 lremote | .4737102 .2178407 2.17 0.030 .0467502 .9006702 ldist | -1.42807 .2893373 -4.94 0.000 -1.995161 -.8609796 lopen | .3878395 .0718552 5.40 0.000 .247006 .528673 english | 1.719349 .2302923 7.47 0.000 1.267985 2.170714 white | 1.184611 2.210313 0.54 0.592 -3.147524 5.516745 lwhitemg | .2011762 .1936309 1.04 0.299 -.1783333 .5806858 _cons | -3.059053 26.24436 -0.12 0.907 -54.49706 48.37895 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .00124 lgdp | -.001089 .004922 lgdpau | -.001347 .00082 .667222 lgdpdfrati~w | -.000171 .001372 -.013772 .107463 lpopau | .001092 -.005494 -2.24084 .030135 7.81011 lpop | .000274 -.004473 .000781 -.000711 -.002911 .007541 lxrate1 | .000113 .000788 .000359 .001939 -.006594 -.00113 .00096 lremote | .001204 -.00033 -.025139 -.013739 .081588 .000926 -.000932 .047455 ldist | .003526 -.007339 -.017541 -.004761 .048014 .010474 -.00007 .015451 .083716 lopen | .00021 -.001139 .00453 .0023 -.022158 .002896 -.000167 .001144 -.001297 english | -.002717 -.00044 .008031 .004943 -.016305 .00013 .001513 -.014097 .008583 white | .002515 -.018686 .100843 .005013 -.388603 .014087 .000212 .040111 -.007325 lwhitemg | -.000366 .000577 -.010472 -.001781 .041695 .000023 -.000166 -.000877 .004086 _cons | -.011746 .105324 20.0473 -.104245 -71.8388 -.0954 .102972 -1.25092 -1.2897</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005163 english | -.0018 .053035 white | .006616 .04631 4.88548 lwhitemg | -.000398 -.003521 -.4176 .037493 _cons | .231977 .099343 3.69303 -.458564 688.767</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 38320.73 Log likelihood = -889.0487 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0250382 .0137297 1.82 0.068 -.0018715 .0519479 lgdp | 1.555008 .0563534 27.59 0.000 1.444557 1.665459 lgdpau | .7244896 .3688793 1.96 0.050 .0014995 1.44748 lgdpdfrati~w | -.2217896 .1382151 -1.60 0.109 -.4926862 .0491069 lpopau | -6.759 1.248681 -5.41 0.000 -9.20637 -4.311629 lpop | -.1655622 .094981 -1.74 0.081 -.3517216 .0205972 lxrate1 | -.0423303 .0184461 -2.29 0.022 -.0784839 -.0061766 lremote | -.6384091 .1489928 -4.28 0.000 -.9304296 -.3463886 ldist | -2.426248 .1833671 -13.23 0.000 -2.785641 -2.066856 lopen | -.036263 .0279564 -1.30 0.195 -.0910564 .0185305 english | 1.207036 .1183224 10.20 0.000 .9751285 1.438944 white | 3.686059 .8686556 4.24 0.000 1.983525 5.388593 lwhitemg | -.2769415 .0800426 -3.46 0.001 -.433822 -.1200609 _cons | 93.37866 11.8465 7.88 0.000 70.15994 116.5974 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000189 lgdp | -.000226 .003176 lgdpau | -.000757 .002106 .136072 lgdpdfrati~w | -.000357 .000836 -.007208 .019103 lpopau | .002545 -.007618 -.45079 .012178 1.5592 lpop | .000162 -.004992 -.002002 -.000232 .004748 .009021 lxrate1 | 7.1e-06 .00024 -1.4e-06 .000445 -.002572 -.000281 .00034 lremote | .000025 -.000883 -.014314 -.004041 .051425 .000155 -.000194 .022199 ldist | .000907 -.006014 -.004116 .00067 .00194 .011154 .000593 -.002107 .033623 lopen | .00002 -.000136 -.001053 .000976 .003689 .000351 -.000069 .001089 .000387 english | -.000295 -.000552 .003381 .002409 -.017052 .000594 .000873 -.004322 .008239 white | .000807 -.017703 -.016058 -.001353 .030662 .030543 .001815 .014032 .036832 lwhitemg | -.000105 .000803 -.000123 -.000314 .002902 -.001621 -.000212 .001127 -.002282 _cons | -.029239 .143387 4.06751 -.016978 -14.4313 -.163601 .03606 -.630351 -.276656</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000782 english | -.000442 .014 white | .001277 .0075 .754563 lwhitemg | -5.2e-06 -.000443 -.066252 .006407 _cons | -.049882 .149123 -.655286 -.024185 140.34</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7881.39 Log likelihood = -955.3519 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2775043 .0337788 8.22 0.000 .2112991 .3437095 lgdp | 1.558189 .0730283 21.34 0.000 1.415056 1.701321 lgdpau | -.110713 .6085473 -0.18 0.856 -1.303444 1.082018 lgdpdfrati~w | -.129351 .2699425 -0.48 0.632 -.6584286 .3997265 lpopau | -1.256763 2.125208 -0.59 0.554 -5.422095 2.908569 lpop | -.4915072 .0806836 -6.09 0.000 -.6496442 -.3333701 lxrate1 | -.1384769 .0280689 -4.93 0.000 -.1934909 -.083463 lremote | -.3226908 .1212141 -2.66 0.008 -.560266 -.0851155 ldist | -2.569246 .3299241 -7.79 0.000 -3.215885 -1.922606 lopen | .1293024 .0512607 2.52 0.012 .0288334 .2297715 english | .8011592 .1383436 5.79 0.000 .5300107 1.072308 white | 9.687701 1.812693 5.34 0.000 6.134889 13.24051 lwhitemg | -.8584144 .1808298 -4.75 0.000 -1.212834 -.5039946 _cons | 26.63031 20.27208 1.31 0.189 -13.10224 66.36285 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001141 lgdp | -.001687 .005333 lgdpau | -.001481 .00231 .37033 lgdpdfrati~w | -.001446 .003319 -.025412 .072869 lpopau | .004604 -.016433 -1.25095 .094419 4.51651 lpop | .000949 -.004364 -.00043 -.002168 .005557 .00651 lxrate1 | .000087 .000362 -.000443 .001316 -.004396 -.000647 .000788 lremote | .000038 -.000342 -.003414 -.000819 .003072 -.000818 .000109 .014693 ldist | .005148 -.00075 -.011277 -.004041 -.005302 .002124 .001429 .009131 .10885 lopen | .000129 -.000729 .001846 .001799 -.010491 .001499 -.000274 .000338 -.00137 english | -.001713 .003354 .000985 .004597 -.009218 -.000131 .001831 -.004174 -.001201 white | -.000098 -.023233 .016643 .001903 -.007926 .01715 .003784 .011174 -.155572 lwhitemg | .000079 .001257 -.002218 -.000703 .004086 -.00103 -.000366 .000615 .014727 _cons | -.068258 .175753 11.1666 -.966906 -41.9449 -.098272 .067046 -.157596 -.777943</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002628 english | -.001755 .019139 white | .004114 .012488 3.28585 lwhitemg | -.000313 -.001662 -.322264 .032699 _cons | .129268 .094112 1.30308 -.165443 410.957</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 9249.22 Log likelihood = -1096.895 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0323878 .0168248 1.93 0.054 -.0005882 .0653638 lgdp | 1.354445 .0496918 27.26 0.000 1.25705 1.451839 lgdpau | .418864 .5481131 0.76 0.445 -.6554179 1.493146 lgdpdfrati~w | -.0324833 .1836591 -0.18 0.860 -.3924485 .327482 lpopau | -4.984954 1.861545 -2.68 0.007 -8.633515 -1.336392 lpop | .0786083 .0696171 1.13 0.259 -.0578386 .2150552 lxrate1 | -.0763191 .0212155 -3.60 0.000 -.1179007 -.0347375 lremote | -1.047331 .1646135 -6.36 0.000 -1.369968 -.724695 ldist | -3.494652 .212748 -16.43 0.000 -3.91163 -3.077674 lopen | .1066097 .0459811 2.32 0.020 .0164885 .196731 english | 2.348385 .1405013 16.71 0.000 2.073008 2.623763 white | 3.780045 1.151834 3.28 0.001 1.522493 6.037597 lwhitemg | -.2040738 .096415 -2.12 0.034 -.3930437 -.015104 _cons | 85.3411 17.65804 4.83 0.000 50.73197 119.9502 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000283 lgdp | -.000459 .002469 lgdpau | -.000357 .000465 .300428 lgdpdfrati~w | -.000603 .000805 .001794 .033731 lpopau | -.000802 .000729 -.998623 -.004082 3.46535 lpop | .000226 -.002654 -.000642 6.9e-07 -.00103 .004847 lxrate1 | -.000034 .000267 .000452 .000758 -.002965 -.000437 .00045 lremote | .00031 .000529 -.017769 -.002657 .055176 -.000698 -.000335 .027098 ldist | .000716 .000433 -.01216 -.002103 .027498 .000141 .000202 .017948 .045262 lopen | .000101 -.00039 -.000241 .001911 .000925 .000827 -.000135 .001185 .000418 english | -.000927 .000752 .003382 .002476 -.011353 .001258 .001244 -.004416 .002418 white | .000358 -.012783 -.003599 -.001568 .005807 .022295 -.000141 .005478 -.007694 lwhitemg | -4.8e-06 .000677 -.000916 .000171 .002981 -.001446 .000074 .001245 .002744 _cons | .019815 -.045871 8.95403 .011657 -32.0309 .021351 .036431 -.856355 -.743086</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002114 english | -.001586 .019741 white | .000915 .031157 1.32672 lwhitemg | .000021 -.002705 -.1075 .009296 _cons | -.028132 .069305 -.056104 -.054735 311.806</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 584.45 Log likelihood = -564.5788 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2594088 .0382128 6.79 0.000 .184513 .3343046 lgdp | .0372301 .0459322 0.81 0.418 -.0527954 .1272556 lgdpau | .364399 .254099 1.43 0.152 -.1336259 .8624239 lgdpdfrati~w | -.4088186 .0975014 -4.19 0.000 -.5999179 -.2177194 lpopau | -2.259273 1.030442 -2.19 0.028 -4.278901 -.2396444 lpop | .5479701 .0758038 7.23 0.000 .3993974 .6965427 lxrate1 | -.089153 .020082 -4.44 0.000 -.1285129 -.049793 lremote | .2142392 .1155808 1.85 0.064 -.012295 .4407734 ldist | -1.497148 .3735535 -4.01 0.000 -2.229299 -.7649964 lopen | .0918944 .0154302 5.96 0.000 .0616518 .122137 english | .6671696 .2113149 3.16 0.002 .253 1.081339 white | 10.64489 .6660312 15.98 0.000 9.339495 11.95029 lwhitemg | -.9718278 .0660425 -14.72 0.000 -1.101269 -.8423868 _cons | 36.52904 11.21611 3.26 0.001 14.54587 58.51221 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .00146 lgdp | -.000245 .00211 lgdpau | .003649 -.002681 .064566 lgdpdfrati~w | -.001238 -.001051 -.001917 .009507 lpopau | -.020923 .017548 -.246322 .004358 1.06181 lpop | -.000657 -.00152 -.000891 .001234 -.005943 .005746 lxrate1 | -6.7e-07 -.000033 .001176 .000713 -.006492 -.000152 .000403 lremote | .001249 .001587 -.007906 -.003889 .025994 -.001998 -.000374 .013359 ldist | .0038 -.002255 .006023 -.001354 -.081008 .01136 .000568 .007163 .139542 lopen | .000372 -.000267 .000525 -.00053 -.004386 .000066 -.00013 .000263 .000974 english | -.001688 .000559 -.002131 .002777 -.000743 .005579 .000811 -.002818 .014961 white | .003711 -.003122 .017368 .002262 -.131695 .010887 .002946 .001541 -.034715 lwhitemg | -.000578 -.000087 -.0024 .000171 .014333 -.000577 -.000264 .000058 .004336 _cons | .212752 -.236769 2.45634 .025787 -10.7763 -.022409 .075672 -.416579 -.361579</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000238 english | -.000761 .044654 white | .000192 .045273 .443598 lwhitemg | -.000038 -.002192 -.0415 .004362 _cons | .051579 -.171615 1.87607 -.199561 125.801</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 3869.61 Log likelihood = -596.4866 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1472326 .0309438 4.76 0.000 .0865839 .2078813 lgdp | .2760931 .0532696 5.18 0.000 .1716866 .3804995 lgdpau | -.1217849 .0617161 -1.97 0.048 -.2427463 -.0008234 lgdpdfrati~w | -.1400897 .0410215 -3.42 0.001 -.2204905 -.059689 lpopau | 3.12812 .2584875 12.10 0.000 2.621494 3.634746 lpop | .8013258 .1004105 7.98 0.000 .6045249 .9981268 lxrate1 | -.0155528 .0079935 -1.95 0.052 -.0312197 .0001141 lremote | .1665506 .0318558 5.23 0.000 .1041143 .228987 ldist | -3.181197 .3471863 -9.16 0.000 -3.861669 -2.500724 lopen | .0053023 .0292928 0.18 0.856 -.0521105 .0627151 english | .7776234 .2754945 2.82 0.005 .237664 1.317583 white | 25.9308 2.89995 8.94 0.000 20.247 31.6146 lwhitemg | -2.357931 .2739284 -8.61 0.000 -2.894821 -1.821042 _cons | -33.66277 5.223593 -6.44 0.000 -43.90083 -23.42472 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000958 lgdp | -.000533 .002838 lgdpau | -.000669 -.000472 .003809 lgdpdfrati~w | .000322 -.00113 .000778 .001683 lpopau | .00472 .000132 -.013254 .000261 .066816 lpop | -.000248 -.002422 .001317 .000594 -.004584 .010082 lxrate1 | 9.2e-06 .000073 -.000045 .000031 .000624 -.000227 .000064 lremote | -.000314 .001193 -.000625 -.000974 .00006 -.00079 .00003 .001015 ldist | .003437 -.000296 -.002959 .000088 .023102 -.001466 -.000094 -.000061 .120538 lopen | -.000344 -.000215 .00025 -.000404 -.004065 .001122 -.000158 .000193 -.000805 english | -.000626 .00002 .000573 .000159 -.005819 .000234 .000041 -.000152 .054353 white | .002894 -.006786 .001466 .002413 -.001573 .034058 -.000586 -.002878 .03182 lwhitemg | -.000547 .000255 .000156 -.000125 -.002265 -.003208 .000053 .000154 -.00583 _cons | -.080863 -.020921 .147252 -.004414 -.93995 -.040322 -.007005 -.004861 -1.45078</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000858 english | -.000047 .075897 white | .001701 .050574 8.40971 lwhitemg | -.000025 -.004204 -.781988 .075037 _cons | .057747 -.455581 -.721295 .137751 27.2859</p><p>. . . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 471.74 Log likelihood = -543.064 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5245192 .0490491 10.69 0.000 .4283847 .6206536 lgdp | -.015166 .0740304 -0.20 0.838 -.1602628 .1299309 lgdpau | 1.879069 .7756984 2.42 0.015 .3587282 3.39941 lgdpdfrati~w | -.5929936 .2740295 -2.16 0.030 -1.130082 -.0559056 lpopau | -9.023944 2.664402 -3.39 0.001 -14.24608 -3.801811 lpop | .3389742 .0904157 3.75 0.000 .1617626 .5161857 lxrate1 | -.1083398 .0252211 -4.30 0.000 -.1577722 -.0589074 lremote | .0148316 .2517158 0.06 0.953 -.4785222 .5081855 ldist | -1.503137 .3121672 -4.82 0.000 -2.114974 -.8913007 lopen | .0382345 .0527748 0.72 0.469 -.0652022 .1416712 english | -.14811 .2214853 -0.67 0.504 -.5822132 .2859933 white | 9.169329 1.058657 8.66 0.000 7.0944 11.24426 lwhitemg | -.8252045 .0942368 -8.76 0.000 -1.009905 -.6405039 _cons | 112.5887 25.27099 4.46 0.000 63.05851 162.119 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002406 lgdp | -.001384 .00548 lgdpau | .000521 -.00062 .601708 lgdpdfrati~w | -.001207 .001408 -.017403 .075092 lpopau | -.006609 -.004174 -2.00871 .066265 7.09904 lpop | -.000143 -.003529 -.000232 -.000661 -.001814 .008175 lxrate1 | .000148 -.000177 .0004 .00088 -.003942 -.000425 .000636 lremote | .001573 .004238 -.022377 -.011693 .063053 -.003055 .000344 .063361 ldist | .004558 .001862 -.008816 -.002425 -.011628 .003318 .000941 .029496 .097448 lopen | -.000243 .000636 .000169 -.000411 -.0089 .000722 -.000019 .001197 .002144 english | -.001815 .000847 .00391 .004263 -.018133 .000334 .000962 -.010189 .022136 white | .013876 -.023212 .014956 -.006671 -.078335 .025904 .004995 .017279 .002207 lwhitemg | -.001378 .00121 -.002736 -.00015 .014193 -.001604 -.000412 .000771 -.000044 _cons | .05616 -.02819 17.8428 -.61191 -65.4164 -.017574 .049947 -1.3347 -.885063</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002785 english | -.000244 .049056 white | -.001388 .018341 1.12075 lwhitemg | .00007 -.000789 -.095653 .008881 _cons | .090604 .03881 .700378 -.158134 638.623</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1144.32 Log likelihood = -352.0027 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0333544 .0183043 1.82 0.068 -.0025213 .0692301 lgdp | .301373 .0612132 4.92 0.000 .1813973 .4213488 lgdpau | -.3106115 .3082082 -1.01 0.314 -.9146886 .2934655 lgdpdfrati~w | -.3221096 .2018557 -1.60 0.111 -.7177395 .0735202 lpopau | 2.26888 1.099137 2.06 0.039 .1146124 4.423149 lpop | .159722 .0717846 2.23 0.026 .0190268 .3004171 lxrate1 | -.0736504 .0188209 -3.91 0.000 -.1105386 -.0367622 lremote | -.1760274 .1104051 -1.59 0.111 -.3924173 .0403626 ldist | -1.319847 .2144257 -6.16 0.000 -1.740113 -.89958 lopen | .0011121 .0253056 0.04 0.965 -.0484859 .0507101 english | 2.147451 .2192417 9.79 0.000 1.717745 2.577157 white | 9.839693 1.77481 5.54 0.000 6.361129 13.31826 lwhitemg | -.7689475 .1828046 -4.21 0.000 -1.127238 -.4106571 _cons | -23.34394 11.17648 -2.09 0.037 -45.24943 -1.438446 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000335 lgdp | -.000383 .003747 lgdpau | .000306 -.002102 .094992 lgdpdfrati~w | -.000607 .000376 -.001188 .040746 lpopau | -.001109 .005553 -.323002 .020327 1.2081 lpop | .0001 -.002803 .000974 .001027 -.009321 .005153 lxrate1 | -.000017 .000203 .001257 .000858 -.005914 -.000165 .000354 lremote | .000191 .000804 -.006906 -.003588 .025339 -.000669 -.000359 .012189 ldist | .000881 .000869 -.002 -.0015 -.001221 .002567 -.000326 .001014 .045978 lopen | .000027 -.000301 -.000096 .001034 -.000835 .00033 -.000011 -.000122 -.0001 english | -.000353 -.001765 .003577 .004552 -.018085 .00512 .000374 -.004324 .015855 white | .001667 -.02261 .01545 .003713 -.088848 .026873 .001111 .009198 -.025813 lwhitemg | -.000162 .001117 -.001132 -.000251 .007303 -.00191 -.000095 -.000289 .001226 _cons | .006301 -.090668 2.97169 -.330158 -11.75 .091308 .067363 -.357565 -.435524</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00064 english | -.000104 .048067 white | .001331 .074594 3.14995 lwhitemg | -.000056 -.007314 -.319701 .033418 _cons | .019263 .041598 1.28631 -.093304 124.914</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 749.53 Log likelihood = -841.5946 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .115374 .0652122 1.77 0.077 -.0124396 .2431876 lgdp | .7146226 .1210263 5.90 0.000 .4774154 .9518298 lgdpau | -2.19674 1.101507 -1.99 0.046 -4.355654 -.0378261 lgdpdfrati~w | -.9438566 .4413709 -2.14 0.032 -1.808928 -.0787856 lpopau | 4.166351 3.782004 1.10 0.271 -3.246241 11.57894 lpop | .160938 .124611 1.29 0.197 -.083295 .4051711 lxrate1 | -.1284781 .0403663 -3.18 0.001 -.2075946 -.0493617 lremote | 1.567336 .27858 5.63 0.000 1.021329 2.113343 ldist | -1.857342 .4918836 -3.78 0.000 -2.821416 -.8932676 lopen | .0038908 .0763369 0.05 0.959 -.1457267 .1535083 english | .5791471 .2715436 2.13 0.033 .0469314 1.111363 white | 10.96138 1.478673 7.41 0.000 8.063238 13.85953 lwhitemg | -.8808913 .1434488 -6.14 0.000 -1.162046 -.5997367 _cons | -22.55872 35.6056 -0.63 0.526 -92.34441 47.22697 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .004253 lgdp | -.004842 .014647 lgdpau | -.002355 .007755 1.21332 lgdpdfrati~w | -.001965 .005691 .000148 .194808 lpopau | .005564 -.040844 -4.05991 .045781 14.3036 lpop | .001663 -.010787 -.002993 -.002971 .014924 .015528 lxrate1 | .000037 .001882 .001143 .0017 -.010893 -.001599 .001629 lremote | .001843 -.004724 -.033853 -.021251 .092204 .003177 .00077 .077607 ldist | .012974 -.014213 -.012737 -.012005 .012523 .016027 -.002746 .023878 .241949 lopen | .000277 -.000507 .00684 .001125 -.035324 .002037 -.00035 .002661 .003812 english | -.006361 .015482 .010274 .002993 -.049239 -.01002 -.000178 -.006541 .019353 white | .0265 -.048419 -.0386 -.038074 .05272 .048003 .005061 .120978 .128698 lwhitemg | -.002886 .002375 -.000636 .000827 .013975 -.002265 -.000834 -.004344 -.016056 _cons | -.106644 .49907 35.8197 -.739781 -131.138 -.348209 .145495 -1.48518 -2.36339</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005827 english | -.000246 .073736 white | .002322 .030484 2.18647 lwhitemg | -.00015 -.005813 -.201567 .020578 _cons | .329738 .238227 -1.96957 -.021896 1267.76</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 564.13 Log likelihood = -128.4198 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0314721 .0292772 1.07 0.282 -.0259102 .0888544 lgdp | .171791 .0605257 2.84 0.005 .0531627 .2904192 lgdpau | .3807668 .4133843 0.92 0.357 -.4294517 1.190985 lgdpdfrati~w | .3612138 .1881799 1.92 0.055 -.0076119 .7300396 lpopau | 2.461914 1.460325 1.69 0.092 -.4002694 5.324098 lpop | .3040772 .0799795 3.80 0.000 .1473203 .4608342 lxrate1 | -.0314361 .0166767 -1.89 0.059 -.0641219 .0012497 lremote | -.0311103 .1294082 -0.24 0.810 -.2847458 .2225251 ldist | -2.253871 .4241343 -5.31 0.000 -3.085159 -1.422583 lopen | .0645203 .0390656 1.65 0.099 -.0120469 .1410875 english | .8908105 .1856868 4.80 0.000 .5268712 1.25475 white | 15.97369 1.216776 13.13 0.000 13.58886 18.35853 lwhitemg | -1.355064 .113581 -11.93 0.000 -1.577679 -1.132449 _cons | -37.68512 15.04473 -2.50 0.012 -67.17225 -8.197997 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000857 lgdp | -.000664 .003663 lgdpau | -.000585 -.000104 .170887 lgdpdfrati~w | -.000745 .000892 -.000414 .035412 lpopau | .001622 .001162 -.573273 .016461 2.13255 lpop | -.000115 -.002621 .000501 .000578 -.005052 .006397 lxrate1 | .00005 .000106 .000199 .000559 -.002708 -.000123 .000278 lremote | .000885 .002024 -.007655 -.003589 .022177 -.001606 .000115 .016746 ldist | .002422 -.004199 -.010484 -.00842 .002874 .008552 .000159 .017423 .17989 lopen | -.000016 -.000058 .000151 .000334 -.004499 .000564 -.000053 .000032 .000318 english | -.001264 -.00049 .003304 .002916 -.016518 .004602 .000136 -.004894 .00468 white | .004194 -.016444 .030482 -.003814 -.27814 .025374 .003565 -.005335 -.026209 lwhitemg | -.000479 .000851 -.003139 .000202 .027481 -.001928 -.000382 .000628 .003539 _cons | -.029604 -.032357 5.1897 -.214638 -20.5181 -.039101 .035103 -.498602 -1.69152</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001526 english | .000134 .03448 white | -.000427 .046712 1.48054 lwhitemg | .000059 -.004057 -.135059 .012901 _cons | .060766 .118189 4.03391 -.396963 226.344</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 260.13 Log likelihood = 134.4335 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0034291 .0195201 -0.18 0.861 -.0416877 .0348296 lgdp | .2938497 .0530992 5.53 0.000 .1897773 .3979222 lgdpau | -.3268804 .354687 -0.92 0.357 -1.022054 .3682934 lgdpdfrati~w | -.0886911 .1445418 -0.61 0.539 -.3719878 .1946056 lpopau | 4.307336 1.293908 3.33 0.001 1.771324 6.843348 lpop | -.0718548 .0620604 -1.16 0.247 -.193491 .0497813 lxrate1 | -.1005787 .0154351 -6.52 0.000 -.130831 -.0703264 lremote | .342049 .1299908 2.63 0.009 .0872718 .5968262 ldist | -1.35531 .2823321 -4.80 0.000 -1.908671 -.801949 lopen | .0309801 .0294369 1.05 0.293 -.0267152 .0886755 english | .2451819 .1692156 1.45 0.147 -.0864747 .5768385 white | 9.362131 2.063638 4.54 0.000 5.317475 13.40679 lwhitemg | -.7937476 .1971663 -4.03 0.000 -1.180187 -.4073087 _cons | -57.45412 13.72973 -4.18 0.000 -84.36389 -30.54434 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000381 lgdp | -.000403 .00282 lgdpau | .000247 -.000738 .125803 lgdpdfrati~w | -.00046 .000517 -.006125 .020892 lpopau | -.002242 .003369 -.432264 .028004 1.6742 lpop | .00003 -.002278 2.9e-06 -.000087 -.000159 .003851 lxrate1 | 5.5e-07 7.2e-06 .00051 .000487 -.004503 -.000115 .000238 lremote | .000323 .001771 -.007858 -.001229 .027512 -.001551 -.000065 .016898 ldist | .001783 -.002061 -.0023 -.001506 .003871 .004579 .000063 .007242 .079711 lopen | -.000018 .000047 .000075 .000199 -.001775 .000188 -.00003 .000079 -.000558 english | -.000467 -.001803 .000234 .000914 .018831 .004788 .000229 -.001454 .015764 white | .002573 -.015669 .018796 -.005182 -.148929 .01628 .001981 -.001005 .015301 lwhitemg | -.000287 .000954 -.0022 .000489 .015221 -.001279 -.000149 .000741 -.002383 _cons | .018246 -.057346 3.98017 -.3106 -16.7875 -.037625 .061385 -.481499 -.864998</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000867 english | -.0003 .028634 white | -.000842 .036019 4.2586 lwhitemg | .000096 -.003367 -.400249 .038875 _cons | .028616 -.496929 1.90893 -.177729 188.505 . xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 563.77 Log likelihood = -668.5284 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1651144 .0516048 3.20 0.001 .0639709 .2662579 lgdp | .7821761 .1025849 7.62 0.000 .5811133 .9832389 lgdpau | -.6495231 .6666129 -0.97 0.330 -1.95606 .6570142 lgdpdfrati~w | -.2547775 .2733009 -0.93 0.351 -.7904374 .2808823 lpopau | 4.16985 2.296307 1.82 0.069 -.3308293 8.670529 lpop | -.2285679 .1479297 -1.55 0.122 -.5185047 .0613689 lxrate1 | -.138375 .0307484 -4.50 0.000 -.1986407 -.0781093 lremote | .1414757 .2314409 0.61 0.541 -.31214 .5950914 ldist | -3.321225 .6859637 -4.84 0.000 -4.665689 -1.97676 lopen | .0351769 .0638595 0.55 0.582 -.0899855 .1603393 english | -.3232806 .4316508 -0.75 0.454 -1.169301 .5227393 white | 21.91289 4.113019 5.33 0.000 13.85152 29.97426 lwhitemg | -1.955874 .3830822 -5.11 0.000 -2.706701 -1.205047 _cons | -33.07745 22.67889 -1.46 0.145 -77.52726 11.37237 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002663 lgdp | -.002254 .010524 lgdpau | .00134 -.001615 .444373 lgdpdfrati~w | -.001681 .002912 -.01097 .074693 lpopau | -.008582 .001061 -1.47854 .060619 5.27303 lpop | -.000229 -.007527 -.001606 -.001496 -.007751 .021883 lxrate1 | .000144 .000451 .001965 .001178 -.010229 -.00076 .000945 lremote | .00098 .004567 -.020454 -.011423 .039326 -.002925 .000487 .053565 ldist | .01022 .013649 -.006774 -.003658 -.048716 .004994 .000419 .03286 .470546 lopen | .000424 -.001012 -.000813 -.000043 -.010331 .001858 -.000182 .00063 .00269 english | -.006155 .003507 .00074 .005671 -.016153 .018283 .000675 -.003048 .132536 white | .006775 -.03445 .104119 .00696 -.357719 .076997 .005971 .031324 .257135 lwhitemg | -.001182 .001409 -.011254 -.001876 .040012 -.005943 -.000648 -.000611 -.039347 _cons | .045232 -.257632 13.1709 -.698146 -48.4684 -.025809 .106057 -.950669 -4.24669</p><p>| lopen english white lwhitemg _cons ------+------lopen | .004078 english | -.001613 .186322 white | .002498 .314861 16.9169 lwhitemg | -.000108 -.033786 -1.54999 .146752 _cons | .156947 -1.37387 -.117805 .091921 514.332</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1434.06 Log likelihood = -546.1796 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1570127 .0416163 3.77 0.000 .0754463 .2385791 lgdp | .863445 .0971554 8.89 0.000 .673024 1.053866 lgdpau | .7860883 .6074044 1.29 0.196 -.4044025 1.976579 lgdpdfrati~w | -.0819898 .260177 -0.32 0.753 -.5919275 .4279478 lpopau | -3.997618 2.096208 -1.91 0.057 -8.10611 .1108734 lpop | .4301801 .1283917 3.35 0.001 .178537 .6818231 lxrate1 | -.0824566 .0281266 -2.93 0.003 -.1375838 -.0273294 lremote | -.1979357 .2156999 -0.92 0.359 -.6206998 .2248283 ldist | -2.165012 .4220219 -5.13 0.000 -2.992159 -1.337864 lopen | -.0647749 .0659007 -0.98 0.326 -.1939378 .0643881 english | 1.23837 .3125406 3.96 0.000 .6258013 1.850938 white | 22.97872 3.130716 7.34 0.000 16.84263 29.11482 lwhitemg | -2.270737 .2765304 -8.21 0.000 -2.812727 -1.728748 _cons | 44.8502 20.22831 2.22 0.027 5.203444 84.49695 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001732 lgdp | -.001631 .009439 lgdpau | -.001825 .003993 .36894 lgdpdfrati~w | -.001403 .001931 -.005554 .067692 lpopau | .005839 -.029651 -1.23024 .021446 4.39409 lpop | .000346 -.007968 -.002921 -.001812 .011931 .016484 lxrate1 | .000048 .000516 .000521 .001137 -.004819 -.000764 .000791 lremote | .000415 .003012 -.019238 -.015385 .047253 -.002344 .000418 .046526 ldist | .006122 -.002024 -.008181 -.001952 -.001072 .016946 .000344 .005893 .178102 lopen | .000202 -.000046 -7.0e-06 .002089 -.009905 .001306 -.000108 .000978 .00159 english | -.003022 .003101 .006225 .005272 -.028127 -.0016 .00079 -.006988 .055546 white | .004943 -.032962 .019992 -.006178 -.019114 .056595 .003592 .020187 .042568 lwhitemg | -.000703 .001083 -.003474 -.000643 .011081 -.003993 -.000343 .000673 -.007717 _cons | -.086581 .298528 10.943 -.134101 -40.5891 -.341746 .055866 -.759654 -1.7754</p><p>| lopen english white lwhitemg _cons ------+------lopen | .004343 english | -.001633 .097682 white | .003873 .004346 9.80139 lwhitemg | -.000441 .000817 -.85088 .076469 _cons | .120949 -.225635 -.998709 .019681 409.184</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1316.20 Log likelihood = -757.9207 Prob > chi2 = 0.0000 ------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0280436 .0339798 0.83 0.409 -.0385556 .0946428 lgdp | 1.133678 .0986977 11.49 0.000 .9402345 1.327122 lgdpau | .9445358 .6883784 1.37 0.170 -.4046611 2.293733 lgdpdfrati~w | -.0329979 .2713651 -0.12 0.903 -.5648637 .4988678 lpopau | 2.443087 2.415357 1.01 0.312 -2.290925 7.177099 lpop | -.290504 .1566031 -1.86 0.064 -.5974405 .0164324 lxrate1 | -.1449933 .0223285 -6.49 0.000 -.1887564 -.1012301 lremote | -.4842136 .1910654 -2.53 0.011 -.858695 -.1097323 ldist | -1.881225 .7249119 -2.60 0.009 -3.302027 -.4604241 lopen | -.0446288 .0724865 -0.62 0.538 -.1866998 .0974421 english | .4136591 .3409878 1.21 0.225 -.2546646 1.081983 white | 29.15519 2.667369 10.93 0.000 23.92725 34.38314 lwhitemg | -2.750922 .2589445 -10.62 0.000 -3.258444 -2.2434 _cons | -61.42955 24.28286 -2.53 0.011 -109.0231 -13.83602 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001155 lgdp | -.002027 .009741 lgdpau | -.000286 .001194 .473865 lgdpdfrati~w | -.002149 .004622 -.014723 .073639 lpopau | -.003045 -.016752 -1.58502 .04826 5.83395 lpop | .000928 -.009294 -.002363 -.001454 .006309 .024525 lxrate1 | .000027 .000373 .000616 .000807 -.009389 -.000569 .000499 lremote | .001496 .003193 -.018094 -.004478 .026229 -.005148 .00028 .036506 ldist | .006802 .011342 -.024878 -.004627 -.037853 .003701 .001235 .064653 .525497 lopen | .000189 -.000565 -.000834 .005081 -.007741 .001869 -.000316 .000781 .000692 english | -.001825 .004631 .003675 .005112 -.030383 .00585 .000985 -.001045 .059174 white | .013364 -.047818 .031643 -.021658 -.430949 .087045 .008737 .028115 .073682</p><p> lwhitemg | -.001127 .002876 -.004493 .001291 .050232 -.007135 -.00087 -.001614 -.013963 _cons | .007961 .040186 14.2803 -.477604 -54.8012 -.21226 .122732 -.891114 -4.66151</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005254 english | -.000772 .116273 white | -.004536 .229937 7.11486 lwhitemg | .000598 -.025776 -.680295 .067052 _cons | .118981 -.357759 4.97091 -.510491 589.657</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 593.14 Log likelihood = -571.2229 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3999803 .058233 6.87 0.000 .2858457 .5141149 lgdp | .3461346 .10084 3.43 0.001 .1484919 .5437773 lgdpau | 1.197142 .7470904 1.60 0.109 -.2671282 2.661412 lgdpdfrati~w | -.5491809 .3179898 -1.73 0.084 -1.172429 .0740676 lpopau | -4.653993 2.578316 -1.81 0.071 -9.707399 .3994127 lpop | .3219479 .1063088 3.03 0.002 .1135865 .5303094 lxrate1 | -.086923 .0342503 -2.54 0.011 -.1540523 -.0197937 lremote | .0284394 .2272612 0.13 0.900 -.4169844 .4738631 ldist | -1.42703 .5818598 -2.45 0.014 -2.567455 -.2866062 lopen | .107202 .0728688 1.47 0.141 -.0356183 .2500222 english | -.0800686 .2810816 -0.28 0.776 -.6309783 .4708411 white | 19.06069 2.060662 9.25 0.000 15.02187 23.09951 lwhitemg | -1.807587 .1976345 -9.15 0.000 -2.194944 -1.420231 _cons | 48.9915 24.40968 2.01 0.045 1.149418 96.83359 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .003391 lgdp | -.003325 .010169 lgdpau | -.002105 .006147 .558144 lgdpdfrati~w | -.002425 .005788 -.01137 .101117 lpopau | .004311 -.032991 -1.86606 .057351 6.64771 lpop | .001238 -.006707 -.00421 -.004318 .010555 .011302 lxrate1 | .00034 .000484 -.000311 .000813 -.003342 -.000654 .001173 lremote | .000188 .002629 -.009641 -.017466 -.001811 .001213 .001525 .051648 ldist | .011107 .000184 -.005452 -.011394 -.068042 .007176 .000627 .036665 .338561 lopen | -.000175 .000495 .0021 .000111 -.022674 .001828 -.00022 .002207 .00318 english | -.003819 .007945 .005982 .002293 -.026314 -.001341 -.001584 .007335 .092398 white | .022981 -.039216 -.001582 -.069966 .062144 .014184 -.001283 .110427 .213784 lwhitemg | -.002573 .002128 -.00172 .004138 .004808 -.000187 -.00021 -.007582 -.030637 _cons | -.087167 .249622 16.4025 -.5432 -60.2008 -.1729 .038663 -.589543 -2.45346</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00531 english | -.000393 .079007 white | -.007246 .135278 4.24633 lwhitemg | .000698 -.016427 -.398266 .039059 _cons | .237265 -.811754 -3.45289 .295018 595.832</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1541.63 Log likelihood = -273.8507 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0011472 .0243965 0.05 0.962 -.046669 .0489634 lgdp | .4757183 .0848026 5.61 0.000 .3095083 .6419284 lgdpau | -.4408496 .4973185 -0.89 0.375 -1.415576 .5338768 lgdpdfrati~w | .189897 .2295308 0.83 0.408 -.2599752 .6397692 lpopau | 1.647135 1.712731 0.96 0.336 -1.709756 5.004026 lpop | -.271799 .1174157 -2.31 0.021 -.5019296 -.0416684 lxrate1 | -.0429294 .0230896 -1.86 0.063 -.0881842 .0023253 lremote | -.0134964 .1703062 -0.08 0.937 -.3472904 .3202977 ldist | -3.807789 .5103731 -7.46 0.000 -4.808102 -2.807476 lopen | .0044683 .0511567 0.09 0.930 -.095797 .1047335 english | .0070483 .2848279 0.02 0.980 -.5512041 .5653007 white | 16.1919 2.614226 6.19 0.000 11.06811 21.31569 lwhitemg | -1.197204 .2806062 -4.27 0.000 -1.747182 -.6472256 _cons | 15.54585 17.13982 0.91 0.364 -18.04759 49.13929 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000595 lgdp | -.000782 .007191 lgdpau | .000208 -.002988 .247326 lgdpdfrati~w | -.00104 .002936 -.010524 .052684 lpopau | -.001495 .00371 -.824352 .054644 2.93345 lpop | .000257 -.006578 .000757 -.001099 -.005216 .013786 lxrate1 | -.000032 .000195 .001391 .001085 -.006557 -.000534 .000533 lremote | .000141 .002464 -.017483 -.003743 .051142 -.002934 -.000135 .029004 ldist | .002392 .003424 -.011714 -.001002 -.010767 .018062 -.000337 .013583 .260481 lopen | .000048 -.000196 -.002264 .001629 .002671 .000926 -.000026 .000012 .000976 english | -.001267 .001102 .001261 .002463 -.002416 .00362 .000586 .000037 .053343 white | .004487 -.038905 .046918 -.015538 -.282191 .062811 .001944 -.002567 .14858 lwhitemg | -.000469 .001642 -.005239 .0007 .033025 -.004909 -.000017 .002705 -.019211 _cons | .007215 -.092624 7.5081 -.690406 -27.416 -.148171 .077282 -.779517 -2.50792</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002617 english | .000268 .081127 white | -.000419 .097536 6.83418 lwhitemg | .000107 -.010003 -.723396 .07874 _cons | -.004939 -.59545 1.90526 -.20861 293.774</p><p>. . . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping Cote de Ivore . drop if ccode==163840 (10 observations deleted)</p><p>. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist open english gdpdfration > ew white whitemg, stat(n mean sd median min max) col(stat) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 491153.1 1561197 8397.5 0 1.39e+07 immig | 1000 33461.61 117038.7 2986.5 0 1137050 gdp | 1000 2.79e+11 9.69e+11 1.74e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.7676 16.89278 103.0148 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.95e+07 1.54e+08 1.02e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1039.919 10901.96 13.89535 .0068 270182.6 remote | 1000 6728.384 4145.027 6764 1293 39620 dist | 1000 13344.76 3523.66 14215 2409 17972 open | 1000 .7080601 .3899473 .63155 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.053192 .1810264 1.019883 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" countries)--RHS Variables > : . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist phone open eng > lish gdpdfrationew white whitemg, stat(n mean sd median min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 404895.7 1597589 3015.5 0 1.39e+07 immig | 870 14896.5 27125.34 1606 0 158613 gdp | 870 2.37e+11 1.00e+12 1.05e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.9053 17.25217 101.7941 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.34e+07 1.65e+08 1.03e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1179.316 11682.05 19.96485 .0068 270182.6 remote | 870 7153.117 4116.418 6927 1293 39620 dist | 870 13171.45 3410.135 14040 2410 17972 phone | 870 159.1842 241.925 49.84 .54 1449.75 open | 870 .7154501 .4114612 .6248 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.044857 .1859403 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 9776.93 Log likelihood = -549.365 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3664529 .0309534 11.84 0.000 .3057853 .4271204 lgdp | 1.196314 .0330718 36.17 0.000 1.131494 1.261133 lgdpau | -.0135534 .6079785 -0.02 0.982 -1.205169 1.178063 lgdpdfrati~w | -.8930753 .2502681 -3.57 0.000 -1.383592 -.4025588 lpopau | -1.975976 2.098007 -0.94 0.346 -6.087995 2.136043 lpop | .0034818 .0417197 0.08 0.933 -.0782873 .0852508 lxrate1 | -.1292821 .0173264 -7.46 0.000 -.1632412 -.095323 lremote | -.4434918 .0747275 -5.93 0.000 -.589955 -.2970286 ldist | -2.045045 .1542984 -13.25 0.000 -2.347465 -1.742626 lopen | .2500706 .0559284 4.47 0.000 .1404529 .3596882 english | .9379268 .1273008 7.37 0.000 .6884218 1.187432 white | 4.87116 .5657607 8.61 0.000 3.762289 5.980031 lwhitemg | -.4573193 .0508141 -9.00 0.000 -.5569131 -.3577254 _cons | 34.76761 19.31964 1.80 0.072 -3.098175 72.6334 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000958 lgdp | -.000346 .001094 lgdpau | -.000913 .001423 .369638 lgdpdfrati~w | -.000826 .000129 -.008952 .062634 lpopau | .002091 -.008295 -1.25062 .050269 4.40163 lpop | -.000131 -.000722 .000173 .000228 -.000553 .001741 lxrate1 | .000097 .000144 .000429 .000158 -.002733 -.000115 .0003 lremote | .000477 .000052 -.000354 -.001884 -.003406 -.00023 .000064 .005584 ldist | .001637 .000868 .001004 -.001241 -.014943 .00004 .001457 .005077 .023808 lopen | -.000225 .000622 .002625 .000618 -.017379 .000435 .00018 .001337 .001157 english | -.001327 .00277 .003146 .002513 -.011678 -.001191 .000566 -.00339 .001888 white | .004367 -.00162 .003133 -.009107 -.024619 .005508 -.000274 -.001007 .001567 lwhitemg | -.000542 .00016 -.000271 .000844 .002578 -.000456 .000012 .000183 -.000654 _cons | -.026726 .077922 11.0212 -.638567 -39.91 -.002808 .016352 -.027093 -.082917</p><p>| lopen english white lwhitemg _cons ------+------lopen | .003128 english | -.000674 .016205 white | -.000299 .003404 .320085 lwhitemg | -.000046 -.000089 -.028287 .002582 _cons | .178045 .072608 .232989 -.023302 373.248 . . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 71240.44 Log likelihood = -986.2249 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0457391 .0136964 3.34 0.001 .0188947 .0725836 lgdp | 1.617858 .0492426 32.85 0.000 1.521344 1.714371 lgdpau | .9752246 .3506134 2.78 0.005 .2880349 1.662414 lgdpdfrati~w | -.4415212 .1468679 -3.01 0.003 -.7293769 -.1536655 lpopau | -6.717916 1.185354 -5.67 0.000 -9.041167 -4.394664 lpop | -.3595462 .0819893 -4.39 0.000 -.5202423 -.1988501 lxrate1 | -.1188738 .0203621 -5.84 0.000 -.1587827 -.0789649 lremote | -.9905145 .0869162 -11.40 0.000 -1.160867 -.8201618 ldist | -3.263766 .1482926 -22.01 0.000 -3.554415 -2.973118 lopen | -.0605769 .0264192 -2.29 0.022 -.1123576 -.0087961 english | 1.018074 .0856826 11.88 0.000 .8501388 1.186009 white | 4.759102 .7380643 6.45 0.000 3.312523 6.205681 lwhitemg | -.4730298 .0706867 -6.69 0.000 -.6115733 -.3344864 _cons | 99.32734 11.1382 8.92 0.000 77.49687 121.1578 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000188 lgdp | -.000239 .002425 lgdpau | -.001259 .001588 .12293 lgdpdfrati~w | -.000616 .000325 -.011839 .02157 lpopau | .005069 -.006475 -.406436 .023801 1.40506 lpop | .000118 -.003793 -.001095 .000799 .002449 .006722 lxrate1 | -.000036 .000276 -.000026 .000418 -.003252 -.000292 .000415 lremote | .000476 .000653 -.005949 -.003116 .021397 -.001694 .00009 .007554 ldist | .000587 -.000626 -.005916 -.001643 .01545 .00084 .000542 .00387 .021991 lopen | .000051 -.00009 -.000996 .000887 .003739 .000232 -.000076 .000561 .000155 english | -.000448 .000243 .003126 .002729 -.020824 .000367 .001143 -.002572 .001848 white | .001101 -.010747 -.009841 -.00363 .038564 .015848 -.000688 .005865 -.035402 lwhitemg | -.000087 .000553 .000507 .00028 -.002976 -.000706 .000121 -.000198 .004232 _cons | -.057495 .070421 3.62429 -.079556 -12.9112 -.024518 .045275 -.289973 -.350675</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000698 english | -.00042 .007342 white | .001627 -.002415 .544739 lwhitemg | -.000132 .000482 -.050954 .004997 _cons | -.044545 .251778 -.092039 -.005185 124.059</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7901.27 Log likelihood = -921.1399 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1289637 .0254043 5.08 0.000 .0791721 .1787553 lgdp | 1.752825 .0697381 25.13 0.000 1.616141 1.889509 lgdpau | .0875716 .5759672 0.15 0.879 -1.041303 1.216447 lgdpdfrati~w | -.3818752 .2335095 -1.64 0.102 -.8395454 .0757949 lpopau | -2.840297 2.012793 -1.41 0.158 -6.7853 1.104705 lpop | -.6248885 .0823791 -7.59 0.000 -.7863486 -.4634283 lxrate1 | -.1509317 .0272966 -5.53 0.000 -.2044319 -.0974314 lremote | -.3987688 .1298999 -3.07 0.002 -.653368 -.1441696 ldist | -3.726724 .3349145 -11.13 0.000 -4.383144 -3.070304 lopen | .0835486 .0456088 1.83 0.067 -.0058429 .1729402 english | 1.022919 .1446038 7.07 0.000 .7395007 1.306337 white | 9.668089 1.813232 5.33 0.000 6.114219 13.22196 lwhitemg | -.8473526 .1808257 -4.69 0.000 -1.201764 -.4929406 _cons | 58.24981 19.19814 3.03 0.002 20.62215 95.87746 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000645 lgdp | -.001002 .004863 lgdpau | -.001757 .003362 .331738 lgdpdfrati~w | -.000942 .002577 -.019163 .054527 lpopau | .004764 -.017199 -1.12428 .071176 4.05134 lpop | .000693 -.004191 -.001093 -.002559 .002355 .006786 lxrate1 | .000043 .000464 -.000026 .001065 -.004957 -.000753 .000745 lremote | -.000046 -.000196 -.006629 -.000567 .018795 -.001219 .000133 .016874 ldist | .002865 .005589 -.011869 -.001474 -.006867 -.000652 .001417 .009218 .112168 lopen | .000111 -.000656 .00069 .002023 -.002685 .001203 -.000232 .000505 -.000844 english | -.001072 .002785 .005844 .000691 -.042288 .002075 .001746 -.004808 .003067 white | .001245 -.028169 .01216 -.006276 -.040152 .024308 .003752 .009948 -.143405 lwhitemg | -.000104 .001559 -.002151 .000102 .008679 -.001604 -.000396 .000898 .011968 _cons | -.050258 .103995 10.0902 -.730172 -37.5642 -.004985 .065375 -.350964 -.858443</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00208 english | -.001515 .02091 white | .003011 .020323 3.28781 lwhitemg | -.000187 -.00252 -.32164 .032698 _cons | .025589 .459 1.84894 -.217161 368.568</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2167.71 Log likelihood = -1131.242 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0873765 .0427434 2.04 0.041 .0036008 .1711521 lgdp | .9574404 .0827431 11.57 0.000 .795267 1.119614 lgdpau | -.463302 .8896144 -0.52 0.603 -2.206914 1.28031 lgdpdfrati~w | -.4243363 .3835944 -1.11 0.269 -1.176167 .3274948 lpopau | .0401554 3.05601 0.01 0.990 -5.949515 6.029825 lpop | .0835811 .1020268 0.82 0.413 -.1163877 .2835499 lxrate1 | -.1227659 .034939 -3.51 0.000 -.1912451 -.0542867 lremote | .6085902 .237208 2.57 0.010 .143671 1.073509 ldist | -1.686396 .3506274 -4.81 0.000 -2.373613 -.9991794 lopen | .349265 .0832493 4.20 0.000 .1860993 .5124307 english | 1.570587 .2421439 6.49 0.000 1.095993 2.04518 white | 1.811885 2.233751 0.81 0.417 -2.566186 6.189955 lwhitemg | .1603009 .1966257 0.82 0.415 -.2250785 .5456802 _cons | 2.220441 29.08163 0.08 0.939 -54.7785 59.21938 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001827 lgdp | -.00175 .006846 lgdpau | -.001971 .002129 .791414 lgdpdfrati~w | -.000665 .001299 -.009272 .147145 lpopau | .004262 -.012939 -2.65419 .036981 9.3392 lpop | .000371 -.006108 -.000423 .00005 .001311 .010409 lxrate1 | .000094 .001032 .000825 .001843 -.009198 -.001255 .001221 lremote | .001242 .000667 -.028202 -.015826 .088298 .000733 -.000834 .056268 ldist | .004521 -.007266 -.020923 -.007653 .069383 .011036 -.000356 .021601 .12294 lopen | .000281 -.001152 .0062 .004224 -.033028 .002999 -.000219 .001967 -.00069 english | -.003847 .001985 .010234 .006827 -.021425 -.001637 .001618 -.014953 .01393 white | .003631 -.024292 .115684 .008705 -.467277 .02247 .000406 .039575 -.036377 lwhitemg | -.000538 .000953 -.012105 -.002145 .050338 -.00032 -.000193 -.000459 .007083 _cons | -.046611 .169825 23.6919 -.3398 -86.5583 -.147131 .131624 -1.43428 -1.99661</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00693 english | -.001984 .058634 white | .006768 .033563 4.98964 lwhitemg | -.000403 -.002387 -.428059 .038662 _cons | .353622 .05668 4.87568 -.593334 845.741</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 57160.32 Log likelihood = -924.2747 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0229903 .0148353 1.55 0.121 -.0060864 .052067 lgdp | 1.715505 .0492965 34.80 0.000 1.618885 1.812124 lgdpau | .8260177 .3731617 2.21 0.027 .0946342 1.557401 lgdpdfrati~w | -.2086071 .1175603 -1.77 0.076 -.4390211 .0218068 lpopau | -7.009096 1.258959 -5.57 0.000 -9.476611 -4.541581 lpop | -.4594871 .0842432 -5.45 0.000 -.6246008 -.2943734 lxrate1 | -.0349038 .0165694 -2.11 0.035 -.0673792 -.0024283 lremote | -.6066407 .1412399 -4.30 0.000 -.8834658 -.3298155 ldist | -2.755267 .1563116 -17.63 0.000 -3.061632 -2.448902 lopen | -.0246816 .0295517 -0.84 0.404 -.0826019 .0332387 english | 1.193891 .1061521 11.25 0.000 .9858368 1.401946 white | 2.892776 .9183538 3.15 0.002 1.092835 4.692716 lwhitemg | -.2379352 .0863359 -2.76 0.006 -.4071505 -.0687199 _cons | 98.71287 11.85974 8.32 0.000 75.46821 121.9575 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .00022 lgdp | -.000214 .00243 lgdpau | -.000777 .001882 .13925 lgdpdfrati~w | -.0002 .000423 -.00405 .01382 lpopau | .002208 -.005932 -.460357 .006067 1.58498 lpop | .000096 -.003872 -.001412 .000025 .002956 .007097 lxrate1 | .000016 .000162 -.000256 .000369 -.001071 -.000225 .000275 lremote | .000073 -.000752 -.015734 -.000091 .05219 .000189 .000104 .019949 ldist | .000952 -.00475 -.003616 .00091 .002347 .00798 .000481 -.000976 .024433 lopen | 8.1e-06 -.000099 -.000337 .001143 .001043 .000345 -.000061 .001145 .000335 english | -.000345 -.000243 .003259 .001366 -.014393 .000068 .000709 -.003625 .004899 white | .00061 -.013324 -.019129 .001443 .049184 .022037 .001096 .018633 .023949 lwhitemg | -.0001 .000601 2.8e-06 -.000142 .001148 -.001053 -.000095 .000479 -.001279 _cons | -.023472 .107527 4.1443 -.025768 -14.6264 -.114157 .017384 -.605322 -.196499</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000873 english | -.000497 .011268 white | .001583 .005764 .843374 lwhitemg | -.000036 -.000339 -.076313 .007454 _cons | -.025579 .137593 -.763182 -.00718 140.653</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8401.21 Log likelihood = -947.6247 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .139637 .0263144 5.31 0.000 .0880616 .1912123 lgdp | 1.740995 .0668487 26.04 0.000 1.609974 1.872016 lgdpau | -.0738769 .5653931 -0.13 0.896 -1.182027 1.034273 lgdpdfrati~w | -.2982797 .2369539 -1.26 0.208 -.7627007 .1661413 lpopau | -1.820599 1.973775 -0.92 0.356 -5.689127 2.047929 lpop | -.570006 .0806911 -7.06 0.000 -.7281577 -.4118543 lxrate1 | -.1330261 .027102 -4.91 0.000 -.186145 -.0799072 lremote | -.3878014 .1243213 -3.12 0.002 -.6314668 -.1441361 ldist | -3.511898 .3205264 -10.96 0.000 -4.140118 -2.883677 lopen | .0868646 .0457882 1.90 0.058 -.0028786 .1766077 english | 1.184646 .1468926 8.06 0.000 .8967417 1.47255 white | 10.53344 1.817261 5.80 0.000 6.971672 14.09521 lwhitemg | -.9394598 .1811616 -5.19 0.000 -1.29453 -.5843897 _cons | 42.49058 18.77493 2.26 0.024 5.692393 79.28878 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000692 lgdp | -.001033 .004469 lgdpau | -.001837 .003408 .319669 lgdpdfrati~w | -.001047 .002245 -.018563 .056147 lpopau | .005096 -.01746 -1.08323 .068979 3.89579 lpop | .000643 -.003968 -.001638 -.001451 .007565 .006511 lxrate1 | .000036 .000391 -.000024 .001068 -.00493 -.000649 .000735 lremote | 7.0e-06 -.000264 -.005198 -.000995 .011624 -.001022 .000078 .015456 ldist | .003147 .003123 -.012141 -.00317 -.005169 .000222 .001074 .009161 .102737 lopen | .000127 -.000698 .00094 .001764 -.004026 .001244 -.000261 .00046 -.000811 english | -.001315 .002563 .003992 .003596 -.026561 .002031 .001893 -.004739 -.001084 white | -.000108 -.024989 .010901 .002402 -.005196 .021741 .004194 .009642 -.153701 lwhitemg | .000027 .001413 -.001889 -.000582 .004525 -.001396 -.000412 .000772 .013829 _cons | -.055352 .137282 9.72383 -.702148 -36.0938 -.089404 .068615 -.257261 -.745086</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002097 english | -.001673 .021577 white | .002779 .026334 3.30244 lwhitemg | -.000168 -.002878 -.32359 .03282 _cons | .042082 .287384 1.36379 -.17118 352.498</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8213.45 Log likelihood = -1132.995 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .013588 .0153932 0.88 0.377 -.016582 .0437581 lgdp | 1.408814 .0496263 28.39 0.000 1.311549 1.50608 lgdpau | .6778166 .514812 1.32 0.188 -.3311964 1.68683 lgdpdfrati~w | -.0933494 .1708284 -0.55 0.585 -.428167 .2414682 lpopau | -6.016554 1.751378 -3.44 0.001 -9.449192 -2.583917 lpop | .0200596 .0731816 0.27 0.784 -.1233737 .1634928 lxrate1 | -.0618903 .0201358 -3.07 0.002 -.1013557 -.022425 lremote | -.9287355 .1587261 -5.85 0.000 -1.239833 -.6176382 ldist | -3.40279 .2145546 -15.86 0.000 -3.82331 -2.982271 lopen | .0650721 .0422671 1.54 0.124 -.01777 .1479141 english | 2.395512 .1370821 17.48 0.000 2.126836 2.664188 white | 3.590798 1.16112 3.09 0.002 1.315044 5.866551 lwhitemg | -.1791436 .0978133 -1.83 0.067 -.3708542 .0125669 _cons | 93.52617 16.72189 5.59 0.000 60.75186 126.3005 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000237 lgdp | -.000396 .002463 lgdpau | -.00002 .000268 .265031 lgdpdfrati~w | -.000497 .000471 .003398 .029182 lpopau | -.001431 .000843 -.880575 -.008879 3.06732 lpop | .000187 -.002847 -.00062 .000433 -.000982 .005356 lxrate1 | -.000019 .000225 .000475 .000547 -.002789 -.000421 .000405 lremote | .000149 .000371 -.01732 -.000732 .055339 -.000654 -.000267 .025194 ldist | .000524 .000139 -.010477 -.001146 .022431 .00095 .000226 .015492 .046034 lopen | .00005 -.000324 .000051 .002476 .000285 .00075 -.00014 .001004 .000162 english | -.000727 .00062 .002173 .001294 -.009555 .001709 .001077 -.00378 .003183 white | .000379 -.013112 -.00611 -.000117 .013224 .02412 -.000188 .006637 -.006766 lwhitemg | -.000013 .000664 -.000778 .000173 .002738 -.001534 .000076 .001174 .002687 _cons | .02377 -.034987 7.9061 .029238 -28.476 .007703 .033123 -.830052 -.696458</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001787 english | -.001331 .018792 white | .000957 .032228 1.3482 lwhitemg | 3.5e-06 -.002837 -.109834 .009567 _cons | -.021976 .055236 -.155912 -.051354 279.622</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 790.40 Log likelihood = -604.4136 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4438439 .0483086 9.19 0.000 .3491609 .538527 lgdp | .1772667 .0797191 2.22 0.026 .02102 .3335133 lgdpau | -.1689036 .736924 -0.23 0.819 -1.613248 1.275441 lgdpdfrati~w | -.6860996 .2728228 -2.51 0.012 -1.220822 -.1513768 lpopau | -1.468594 2.51844 -0.58 0.560 -6.404646 3.467457 lpop | .3319519 .0901429 3.68 0.000 .1552752 .5086287 lxrate1 | -.1799031 .0243985 -7.37 0.000 -.2277231 -.132083 lremote | .1563052 .2170273 0.72 0.471 -.2690604 .5816708</p><p> ldist | -1.657941 .4371636 -3.79 0.000 -2.514766 -.8011159 lopen | .1052178 .0580036 1.81 0.070 -.0084672 .2189029 english | .6283076 .2080222 3.02 0.003 .2205916 1.036024 white | 10.64208 .7223034 14.73 0.000 9.22639 12.05777 lwhitemg | -1.035365 .0717247 -14.44 0.000 -1.175943 -.894787 _cons | 38.71876 23.78811 1.63 0.104 -7.905068 85.34259 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002334 lgdp | -.001811 .006355 lgdpau | -.00098 -.001095 .543057 lgdpdfrati~w | -.002002 .001706 -.013278 .074432 lpopau | .001129 -.005515 -1.80279 .060882 6.34254 lpop | -.000134 -.004136 .000649 -.000816 -.000039 .008126 lxrate1 | .000137 .000293 .000453 .001112 -.004535 -.00065 .000595 lremote | .004374 .00506 -.01448 -.009404 .014749 -.004906 .000096 .047101 ldist | .007086 -.006845 -.017666 -.007594 -.011368 .013424 .00123 .047706 .191112 lopen | -.000163 .00043 -.001015 -.001136 -.007805 .000566 -.000036 .001706 .000704 english | -.002366 .001216 .001233 .005425 -.012162 .005396 .001539 -.001269 .012147 white | .012834 -.012168 .011842 -.004887 -.058957 .014193 .004017 .011589 -.000962 lwhitemg | -.000977 .000324 -.001672 .000041 .007 -.000572 -.000398 -.000097 .004961 _cons | -.069203 .069483 15.9842 -.6038 -57.8894 -.132794 .0496 -.786445 -1.68742</p><p>| lopen english white lwhitemg _cons ------+------lopen | .003364 english | -.001045 .043273 white | -.000288 .051985 .521722 lwhitemg | .000038 -.002754 -.049024 .005144 _cons | .120975 -.070173 .491319 -.106556 565.874</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2157.28 Log likelihood = -610.9289 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1721795 .0404534 4.26 0.000 .0928922 .2514667 lgdp | .3535981 .0658867 5.37 0.000 .2244625 .4827336 lgdpau | -.1649445 .1052047 -1.57 0.117 -.371142 .041253 lgdpdfrati~w | -.1656767 .0654607 -2.53 0.011 -.2939774 -.0373761 lpopau | 2.666923 .3989908 6.68 0.000 1.884915 3.448931 lpop | .6855635 .1025953 6.68 0.000 .4844804 .8866466 lxrate1 | -.0232626 .0129192 -1.80 0.072 -.0485839 .0020586 lremote | .1663699 .0480168 3.46 0.001 .0722587 .260481 ldist | -3.242194 .361243 -8.98 0.000 -3.950217 -2.534171 lopen | -.0169975 .0436277 -0.39 0.697 -.1025062 .0685112 english | .6576954 .2784334 2.36 0.018 .1119759 1.203415 white | 23.93384 2.958105 8.09 0.000 18.13606 29.73162 lwhitemg | -2.263548 .2742096 -8.25 0.000 -2.800989 -1.726107 _cons | -24.54274 6.146003 -3.99 0.000 -36.58868 -12.49679 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001636 lgdp | -.001211 .004341 lgdpau | -.001143 -.000183 .011068 lgdpdfrati~w | .000541 -.001553 .002078 .004285 lpopau | .007257 -.001855 -.03651 -.000588 .159194 lpop | -.000044 -.002807 .001171 .000461 -.006023 .010526 lxrate1 | -5.8e-06 .000144 -.000097 .000049 .001365 -.000361 .000167 lremote | -.000578 .001772 -.001578 -.002099 .00066 -.000876 .0001 .002306 ldist | .00539 -.000923 -.005007 -.000332 .028418 -.002171 -.000359 .000088 .130497 lopen | -.000449 -.000355 .000209 -.000989 -.007709 .001601 -.00035 .000516 -.000455 english | -.000655 -.001149 .001038 .000967 -.005597 .001082 .000093 -.000856 .056605 white | .006402 -.009197 .00003 .003368 .002648 .03014 -.000867 -.00392 .016881 lwhitemg | -.000921 .0003 .000294 -.000208 -.002645 -.003038 .000089 .00025 -.005011 _cons | -.119368 -.018709 .368002 -.00361 -1.87078 -.003861 -.015901 -.01139 -1.56532</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001903 english | -.000427 .077525 white | .001887 .033919 8.75039 lwhitemg | -7.9e-06 -.001924 -.798592 .075191 _cons | .111667 -.478418 -.509791 .130402 37.7734</p><p>. . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 637.98 Log likelihood = -563.0368 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .5851823 .0486551 12.03 0.000 .4898201 .6805445 lgdp | -.0654265 .0722238 -0.91 0.365 -.2069826 .0761295 lgdpau | 2.140024 .8005474 2.67 0.008 .5709801 3.709068 lgdpdfrati~w | -.7523261 .2895122 -2.60 0.009 -1.31976 -.1848926 lpopau | -10.23047 2.754846 -3.71 0.000 -15.62987 -4.83107 lpop | .3943281 .0851227 4.63 0.000 .2274908 .5611655 lxrate1 | -.1298328 .0265004 -4.90 0.000 -.1817725 -.077893 lremote | .0036399 .2559565 0.01 0.989 -.4980257 .5053055 ldist | -1.534272 .3003505 -5.11 0.000 -2.122948 -.9455956 lopen | .0204672 .0547093 0.37 0.708 -.086761 .1276954 english | -.1721423 .2304909 -0.75 0.455 -.6238961 .2796116 white | 9.96927 1.056005 9.44 0.000 7.899539 12.039 lwhitemg | -.8913602 .0959918 -9.29 0.000 -1.079501 -.7032198 _cons | 126.0504 26.13116 4.82 0.000 74.83431 177.2666 ------. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002367 lgdp | -.001438 .005216 lgdpau | .000296 -.000647 .640876 lgdpdfrati~w | -.001399 .001446 -.019294 .083817 lpopau | -.005697 -.003643 -2.14366 .078183 7.58918 lpop | -.000271 -.002953 .000148 -.000738 -.003199 .007246 lxrate1 | .000206 -.000203 .000612 .000863 -.00496 -.000467 .000702 lremote | .00168 .004246 -.021426 -.013475 .062759 -.003159 .000192 .065514 ldist | .004624 .001658 -.007058 -.003031 -.01302 .00188 .001074 .027074 .09021 lopen | -.00021 .000443 .000562 -.000564 -.011336 .000959 -9.6e-06 .001302 .002053 english | -.002261 -6.1e-06 .003827 .00445 -.01515 .000625 .001087 -.011784 .023169 white | .012633 -.021845 .016577 -.009189 -.085195 .021942 .005354 .017565 .005879</p><p> lwhitemg | -.001285 .001159 -.002835 -9.5e-06 .014905 -.001376 -.00046 .000871 -.000782 _cons | .049715 -.037243 19.0273 -.746086 -70.0056 .013188 .062052 -1.34756 -.789273</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002993 english | -.00063 .053126 white | -.000402 .023867 1.11515 lwhitemg | .000031 -.001024 -.097007 .009214 _cons | .121383 .011373 .7805 -.164867 682.837</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1385.35 Log likelihood = -337.176 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .047192 .0181507 2.60 0.009 .0116172 .0827668 lgdp | .2219195 .0546844 4.06 0.000 .11474 .329099 lgdpau | -.1794171 .3159006 -0.57 0.570 -.7985709 .4397367 lgdpdfrati~w | -.4523377 .1958543 -2.31 0.021 -.8362051 -.0684703 lpopau | 2.343006 1.119331 2.09 0.036 .1491568 4.536856 lpop | .0749168 .0714048 1.05 0.294 -.0650341 .2148676 lxrate1 | -.0694667 .0183411 -3.79 0.000 -.1054145 -.0335188 lremote | -.1469032 .1130952 -1.30 0.194 -.3685658 .0747594 ldist | -1.416065 .2412157 -5.87 0.000 -1.888839 -.943291 lopen | -.0196012 .0247891 -0.79 0.429 -.0681871 .0289846 english | 1.94619 .2152235 9.04 0.000 1.524359 2.36802 white | 9.435099 1.763055 5.35 0.000 5.979574 12.89062 lwhitemg | -.7091188 .1806205 -3.93 0.000 -1.063128 -.3551092 _cons | -24.09276 11.32613 -2.13 0.033 -46.29157 -1.893958 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000329 lgdp | -.000339 .00299 lgdpau | .00017 -.001341 .099793 lgdpdfrati~w | -.000704 -.000019 -.00132 .038359 lpopau | -.000954 .0057 -.340718 .021492 1.2529 lpop | .000077 -.002912 .000767 .000696 -.006557 .005099 lxrate1 | -.000026 .000175 .001177 .00074 -.005616 -.000171 .000336 lremote | .000138 .001078 -.007348 -.003281 .025098 -.000533 -.000321 .012791 ldist | .000969 .000606 -.002581 -.002421 -.000935 .003136 -.000241 .00321 .058185 lopen | .000014 -.000254 -.000053 .001034 -.000979 .000316 -.000017 -.000139 -.000266 english | -.000199 -.003313 .00424 .002781 -.016529 .005058 .000479 -.00282 .020957 white | .001598 -.023369 .013429 .000825 -.072811 .025583 .001145 .009755 -.022728 lwhitemg | -.000171 .001446 -.0012 .000189 .005938 -.001779 -.000086 -.000349 .001168 _cons | .006395 -.093409 3.13611 -.321581 -12.0815 .048432 .06433 -.377004 -.564562</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000615 english | -.000342 .046321 white | .000945 .074292 3.10836 lwhitemg | -.000022 -.006531 -.313983 .032624 _cons | .021453 -.027858 1.0789 -.077767 128.281</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1172.18 Log likelihood = -853.887 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1904149 .0648664 2.94 0.003 .0632791 .3175508 lgdp | .4711332 .1115685 4.22 0.000 .2524629 .6898035 lgdpau | -2.533884 1.130117 -2.24 0.025 -4.748872 -.3188956 lgdpdfrati~w | -1.152522 .4548761 -2.53 0.011 -2.044063 -.2609812 lpopau | 5.778219 3.876053 1.49 0.136 -1.818706 13.37514 lpop | .1752415 .1254506 1.40 0.162 -.0706371 .4211201 lxrate1 | -.1771074 .0398004 -4.45 0.000 -.2551148 -.0991 lremote | 1.699848 .2779056 6.12 0.000 1.155163 2.244533 ldist | -1.6742 .4531954 -3.69 0.000 -2.562446 -.7859529 lopen | -.0378286 .0765824 -0.49 0.621 -.1879274 .1122702 english | .4095296 .2673711 1.53 0.126 -.1145081 .9335672 white | 11.58035 1.521145 7.61 0.000 8.598956 14.56174 lwhitemg | -.8983897 .1445317 -6.22 0.000 -1.181667 -.6151128 _cons | -37.978 36.38152 -1.04 0.297 -109.2845 33.32847 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .004208 lgdp | -.004679 .012448 lgdpau | -.002337 .006121 1.27716 lgdpdfrati~w | -.001821 .004431 -.001096 .206912 lpopau | .0049 -.029839 -4.27312 .056467 15.0238 lpop | .001883 -.010686 -.002533 -.002599 .013108 .015738 lxrate1 | .000033 .001666 .0009 .001474 -.010025 -.00159 .001584 lremote | .001367 -.002618 -.031581 -.021142 .079682 .002609 .000887 .077232 ldist | .012239 -.01115 -.01051 -.010864 .006297 .012331 -.002789 .021569 .205386 lopen | .000297 -.00075 .007758 .001138 -.037554 .002093 -.000353 .002993 .00385 english | -.00634 .011313 .007885 .001887 -.02983 -.008348 -.000525 -.004517 .02685 white | .026905 -.053501 -.044321 -.04249 .081414 .053083 .005441 .130956 .13365 lwhitemg | -.002937 .003278 .000314 .001376 .008575 -.0028 -.00082 -.00549 -.01656 _cons | -.09254 .365542 37.6766 -.884445 -137.581 -.298617 .142423 -1.35116 -1.96392</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005865 english | -.001058 .071487 white | .001164 .036993 2.31388 lwhitemg | .000037 -.005919 -.209891 .020889 _cons | .344413 -.032501 -2.39324 .044415 1323.62</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 572.98 Log likelihood = -117.7724 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0460989 .0292992 1.57 0.116 -.0113265 .1035242 lgdp | .1376572 .0590065 2.33 0.020 .0220066 .2533077 lgdpau | .4258875 .4247807 1.00 0.316 -.4066674 1.258443 lgdpdfrati~w | .335374 .1901866 1.76 0.078 -.0373848 .7081328 lpopau | 2.115495 1.490242 1.42 0.156 -.8053253 5.036315 lpop | .2971284 .0776467 3.83 0.000 .1449437 .4493131 lxrate1 | -.0309619 .0168908 -1.83 0.067 -.0640673 .0021435 lremote | -.0687316 .1318697 -0.52 0.602 -.3271915 .1897284 ldist | -2.208138 .4309676 -5.12 0.000 -3.052819 -1.363457 lopen | .0459279 .0361125 1.27 0.203 -.0248514 .1167072 english | 1.001168 .1871901 5.35 0.000 .6342826 1.368054 white | 16.3146 1.226684 13.30 0.000 13.91035 18.71886 lwhitemg | -1.375896 .1159194 -11.87 0.000 -1.603094 -1.148698 _cons | -32.52084 15.19305 -2.14 0.032 -62.29868 -2.743005 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000858 lgdp | -.000604 .003482 lgdpau | -.000549 -.000149 .180439 lgdpdfrati~w | -.000691 .000716 .000046 .036171 lpopau | .001397 .00147 -.604929 .014358 2.22082 lpop | -.000173 -.002506 .000497 .000645 -.004398 .006029 lxrate1 | .000063 .000068 .000235 .000558 -.002947 -.000088 .000285 lremote | .00093 .002075 -.007888 -.003773 .022479 -.001516 .000043 .01739 ldist | .002566 -.004397 -.010718 -.008404 .002953 .008629 .000259 .018647 .185733 lopen | -.000044 -.000063 .000481 .000356 -.004614 .000518 -.000044 .000104 .000322 english | -.001365 -.000876 .002918 .003501 -.006811 .004292 .000184 -.004876 .006418 white | .003917 -.016276 .030244 -.002144 -.251087 .023473 .003734 -.004423 -.013892 lwhitemg | -.000489 .000902 -.00317 .000066 .02539 -.001775 -.000396 .00058 .002056 _cons | -.028916 -.032843 5.46928 -.188861 -21.1756 -.047628 .037984 -.517602 -1.74939</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001304 english | .000049 .03504 white | -.000602 .040511 1.50475 lwhitemg | .000101 -.003384 -.138968 .013437 _cons | .054095 -.035233 3.49922 -.35095 230.829</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 247.19 Log likelihood = 150.5971 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0133777 .0201353 0.66 0.506 -.0260867 .0528421 lgdp | .2607402 .0497087 5.25 0.000 .1633129 .3581676 lgdpau | -.2786758 .3447375 -0.81 0.419 -.9543488 .3969973 lgdpdfrati~w | -.0881088 .1477496 -0.60 0.551 -.3776928 .2014751 lpopau | 3.783052 1.242191 3.05 0.002 1.348402 6.217701 lpop | -.0859894 .0549481 -1.56 0.118 -.1936857 .0217068 lxrate1 | -.0989467 .0153515 -6.45 0.000 -.1290351 -.0688584 lremote | .2964233 .1196773 2.48 0.013 .06186 .5309865 ldist | -1.484676 .2729385 -5.44 0.000 -2.019626 -.9497268 lopen | .0190139 .0293898 0.65 0.518 -.038589 .0766168 english | .1908224 .1521403 1.25 0.210 -.1073672 .4890119 white | 9.898348 2.054548 4.82 0.000 5.871509 13.92519 lwhitemg | -.8282791 .1970395 -4.20 0.000 -1.214469 -.4420887 _cons | -47.62502 12.9079 -3.69 0.000 -72.92404 -22.32599 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000405 lgdp | -.000418 .002471 lgdpau | .000107 -.000805 .118844 lgdpdfrati~w | -.000442 .000696 -.005816 .02183 lpopau | -.001174 .005566 -.406306 .025483 1.54304 lpop | .000038 -.001765 .000143 -.000207 -.00308 .003019 lxrate1 | -.000011 -.000014 .000571 .000479 -.004684 -.000105 .000236 lremote | .00045 .001594 -.006675 -.001277 .023472 -.001466 -.000209 .014323 ldist | .002097 -.001371 -.001775 -.002398 -.003964 .002548 -.00007 .006981 .074495 lopen | -.000029 .000036 .000158 .000058 -.001974 .000227 -.000022 .000093 -.000273 english | -.000476 -.000693 .000455 .001042 .015299 .002811 .00022 -.001387 .009696 white | .002166 -.013439 .018227 -.003143 -.134878 .012667 .002094 -.000965 .003497 lwhitemg | -.000254 .000809 -.002025 .000272 .013176 -.000983 -.000157 .000571 -.001203 _cons | .000224 -.097741 3.71677 -.271618 -15.192 .027643 .065688 -.418791 -.680352</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000864 english | -.000322 .023147 white | -.00101 .023726 4.22117 lwhitemg | .000114 -.002187 -.398432 .038825 _cons | .026714 -.38055 1.81287 -.159767 166.614</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 509.72 Log likelihood = -700.7318 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1981579 .055697 3.56 0.000 .0889937 .307322 lgdp | .7440117 .1038525 7.16 0.000 .5404645 .9475589 lgdpau | -.7035909 .734082 -0.96 0.338 -2.142365 .7351834 lgdpdfrati~w | -.3647405 .3058585 -1.19 0.233 -.9642122 .2347312 lpopau | 3.723146 2.534817 1.47 0.142 -1.245004 8.691296 lpop | -.2330863 .1407463 -1.66 0.098 -.5089441 .0427714 lxrate1 | -.157483 .0326246 -4.83 0.000 -.2214259 -.09354 lremote | .1455793 .2482692 0.59 0.558 -.3410194 .6321781 ldist | -2.828616 .6637747 -4.26 0.000 -4.12959 -1.527641 lopen | .0384597 .0772234 0.50 0.618 -.1128954 .1898148 english | -.1522678 .4180077 -0.36 0.716 -.9715478 .6670123 white | 21.00983 4.266602 4.92 0.000 12.64745 29.37222 lwhitemg | -1.896056 .3907473 -4.85 0.000 -2.661907 -1.130205 _cons | -28.18039 24.72252 -1.14 0.254 -76.63564 20.27485 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .003102 lgdp | -.00285 .010785 lgdpau | .000952 -.000229 .538876 lgdpdfrati~w | -.001934 .004014 -.013854 .093549 lpopau | -.006991 -.004459 -1.80009 .073685 6.4253 lpop | -.000065 -.007474 -.001542 -.002005 -.004131 .01981 lxrate1 | .000192 .000529 .002069 .001387 -.011446 -.000809 .001064 lremote | .000912 .00358 -.020787 -.014267 .040465 -.00237 .000522 .061638 ldist | .012498 .004213 -.004937 -.00486 -.048938 .005672 .000863 .031716 .440597 lopen | .000365 -.000957 .00027 .000588 -.018813 .002465 -.000144 .000962 .003292 english | -.006705 .002931 .003524 .006999 -.011839 .013874 .000839 -.005685 .104893 white | .008741 -.036721 .150089 .022656 -.408642 .067095 .006122 .032081 .235367 lwhitemg | -.001418 .001807 -.01563 -.003647 .046008 -.004926 -.000705 .000288 -.034712 _cons | .016534 -.10735 15.9836 -.838454 -59.1229 -.066658 .117056 -1.00388 -3.80052</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005963 english | -.001642 .17473 white | .006947 .26097 18.2039 lwhitemg | -.00048 -.028662 -1.63918 .152683 _cons | .250717 -1.14195 -.08731 .032116 611.203</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1) Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1456.28 Log likelihood = -595.8156 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2688113 .0509028 5.28 0.000 .1690435 .368579 lgdp | .5620363 .0949592 5.92 0.000 .3759198 .7481528 lgdpau | .7581215 .7024246 1.08 0.280 -.6186054 2.134848 lgdpdfrati~w | -.0684874 .3078109 -0.22 0.824 -.6717857 .5348109 lpopau | -3.182473 2.428559 -1.31 0.190 -7.942361 1.577414 lpop | .5175488 .1130365 4.58 0.000 .2960013 .7390963 lxrate1 | -.1204138 .0308136 -3.91 0.000 -.1808073 -.0600203 lremote | -.3540494 .2440943 -1.45 0.147 -.8324655 .1243667 ldist | -2.080226 .4663512 -4.46 0.000 -2.994258 -1.166195 lopen | -.1586057 .0806475 -1.97 0.049 -.3166718 -.0005395 english | .9685218 .3229212 3.00 0.003 .3356079 1.601436 white | 24.82853 2.957213 8.40 0.000 19.03249 30.62456 lwhitemg | -2.390112 .26284 -9.09 0.000 -2.905269 -1.874955 _cons | 37.52336 23.30223 1.61 0.107 -8.148167 83.19489 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002591 lgdp | -.002324 .009017 lgdpau | -.002506 .004854 .4934 lgdpdfrati~w | -.002007 .003051 -.014967 .094748 lpopau | .007941 -.031823 -1.65142 .055312 5.8979 lpop | .000342 -.005884 -.002315 -.001699 .009106 .012777 lxrate1 | .000093 .000704 .00067 .001459 -.007211 -.000789 .000949 lremote | .000786 .003644 -.016898 -.020278 .033964 -.002223 .000472 .059582 ldist | .00979 -.001018 -.009819 -.001851 -.004464 .01348 .001294 .012724 .217483 lopen | .000311 -.000446 .000598 .002267 -.016684 .002252 -.000098 .001853 .003223 english | -.003651 .00126 .004137 .005929 -.015134 .001572 .001148 -.007071 .06456 white | .00639 -.02573 .024493 -.019223 -.059721 .042603 .006013 .050784 .007811 lwhitemg | -.000932 .000734 -.003828 -.000038 .01402 -.003215 -.000619 -.001357 -.005682 _cons | -.13021 .275763 14.6446 -.460284 -54.3009 -.26589 .076997 -.793236 -2.10012</p><p>| lopen english white lwhitemg _cons ------+------lopen | .006504 english | -.003112 .104278 white | .006762 .00166 8.74511 lwhitemg | -.000628 .001931 -.763231 .069085 _cons | .189491 -.480106 -.320664 -.024855 542.994</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1499.10 Log likelihood = -769.1612 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0794332 .0380171 2.09 0.037 .0049211 .1539453 lgdp | 1.142802 .1059317 10.79 0.000 .9351793 1.350424 lgdpau | .6841654 .7994882 0.86 0.392 -.8828026 2.251133 lgdpdfrati~w | -.1687715 .3301547 -0.51 0.609 -.8158627 .4783198 lpopau | 3.528787 2.782413 1.27 0.205 -1.924642 8.982215 lpop | -.6112406 .1538423 -3.97 0.000 -.9127659 -.3097153 lxrate1 | -.1419391 .0292791 -4.85 0.000 -.1993251 -.0845531 lremote | -.2588415 .2068628 -1.25 0.211 -.6642851 .1466021 ldist | -1.22865 .7443537 -1.65 0.099 -2.687557 .230256 lopen | -.0574912 .0809503 -0.71 0.478 -.2161508 .1011685 english | .2013927 .3386111 0.59 0.552 -.4622729 .8650583 white | 27.78724 2.672595 10.40 0.000 22.54905 33.02543 lwhitemg | -2.601266 .2600122 -10.00 0.000 -3.11088 -2.091651 _cons | -76.15892 27.25514 -2.79 0.005 -129.578 -22.73982 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001445 lgdp | -.002482 .011222 lgdpau | -.000165 .000994 .639181 lgdpdfrati~w | -.002967 .004786 -.022937 .109002 lpopau | -.006072 -.013216 -2.14067 .103567 7.74182 lpop | .001934 -.012877 -.003938 -.002662 .026975 .023667 lxrate1 | -.000056 .000809 .001809 .001406 -.013525 -.00126 .000857 lremote | .001768 .004827 -.017579 -.008099 .007332 -.005484 .000307 .042792 ldist | .008094 .01193 -.025353 -.012143 -.082717 .005841 .00155 .078129 .554062 lopen | .000244 -.000353 -.003006 .005489 -.0028 .001189 -.000232 .002383 .003778 english | -.002108 .005371 .006122 .006543 -.014934 -.000988 .001686 -.000494 .05603 white | .018979 -.059917 .072287 -.033634 -.53025 .076974 .009622 .030941 .091376 lwhitemg | -.001653 .004042 -.008187 .002578 .058217 -.005671 -.000948 -.001938 -.014955 _cons | .034085 -.008729 19.1914 -1.09592 -71.7201 -.436345 .155955 -.803793 -4.342</p><p>| lopen english white lwhitemg _cons ------+------lopen | .006553 english | -.000817 .114657 white | -.007595 .192591 7.14276 lwhitemg | .000957 -.021748 -.684545 .067606 _cons | .056581 -.563567 5.77662 -.582326 742.843</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 604.25 Log likelihood = -584.9358 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .4855841 .0571107 8.50 0.000 .3736491 .597519 lgdp | .1305529 .0964918 1.35 0.176 -.0585675 .3196734 lgdpau | .9702079 .7449198 1.30 0.193 -.489808 2.430224 lgdpdfrati~w | -.5688177 .321433 -1.77 0.077 -1.198815 .0611794 lpopau | -3.717574 2.576604 -1.44 0.149 -8.767625 1.332477 lpop | .3943367 .1033387 3.82 0.000 .1917965 .5968769 lxrate1 | -.1194857 .0335045 -3.57 0.000 -.1851532 -.0538181 lremote | -.1015412 .2302765 -0.44 0.659 -.5528748 .3497924 ldist | -1.128701 .5926939 -1.90 0.057 -2.29036 .0329577 lopen | .0436836 .0730096 0.60 0.550 -.0994127 .1867798 english | -.0134453 .2830424 -0.05 0.962 -.5681981 .5413075 white | 20.54321 2.231545 9.21 0.000 16.16946 24.91696 lwhitemg | -1.929606 .2124012 -9.08 0.000 -2.345905 -1.513308 _cons | 40.91739 24.38491 1.68 0.093 -6.876161 88.71095 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .003262 lgdp | -.003208 .009311 lgdpau | -.002614 .006724 .554905 lgdpdfrati~w | -.002704 .005958 -.009177 .103319 lpopau | .007143 -.036458 -1.85809 .051205 6.63889 lpop | .001015 -.005656 -.003852 -.003664 .009313 .010679 lxrate1 | .000321 .000386 -.000107 .000742 -.003969 -.000541 .001123 lremote | -.000196 .00347 -.00863 -.017889 -.005256 .000458 .001315 .053027 ldist | .011243 .0034 -.003191 -.010161 -.08247 .005359 .000738 .037071 .351286 lopen | -.000412 .000924 .002312 -.000309 -.024998 .001872 -.000133 .002775 .004993 english | -.003067 .006232 .005194 .001507 -.024822 .000207 -.001218 .00978 .097366 white | .022209 -.040034 -.000024 -.073592 .086401 .0167 .000156 .110014 .197727</p><p> lwhitemg | -.002555 .002426 -.001829 .004484 .002888 -.000746 -.000297 -.007501 -.030526 _cons | -.11664 .256857 16.3069 -.522032 -60.0114 -.15106 .045032 -.578641 -2.44145</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00533 english | .000107 .080113 white | -.00725 .141261 4.97979 lwhitemg | .000643 -.016785 -.464135 .045114 _cons | .239265 -.87477 -3.76048 .329932 594.624</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1610.83 Log likelihood = -240.4782 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0015497 .0214774 0.07 0.942 -.0405451 .0436446 lgdp | .4255325 .0770443 5.52 0.000 .2745283 .5765366 lgdpau | -.245765 .4755556 -0.52 0.605 -1.177837 .6863068 lgdpdfrati~w | .140816 .2103443 0.67 0.503 -.2714513 .5530833 lpopau | 1.063445 1.639436 0.65 0.517 -2.14979 4.27668 lpop | -.2311264 .0998579 -2.31 0.021 -.4268444 -.0354085 lxrate1 | -.0456872 .021734 -2.10 0.036 -.0882851 -.0030894 lremote | -.0911809 .1575457 -0.58 0.563 -.3999648 .217603 ldist | -3.541081 .4800224 -7.38 0.000 -4.481908 -2.600254 lopen | .0197999 .0479265 0.41 0.680 -.0741342 .1137341 english | .0312848 .2994804 0.10 0.917 -.5556861 .6182557 white | 16.23041 2.543575 6.38 0.000 11.2451 21.21573 lwhitemg | -1.180643 .2728075 -4.33 0.000 -1.715336 -.6459504 _cons | 18.65413 16.32791 1.14 0.253 -13.34798 50.65624 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000461 lgdp | -.000649 .005936 lgdpau | .000043 -.001373 .226153 lgdpdfrati~w | -.000922 .002209 -.007875 .044245 lpopau | -.001029 -.00185 -.75498 .039314 2.68775 lpop | .000272 -.004895 -.000155 -.000682 .000677 .009972 lxrate1 | -.000016 .000151 .001253 .000992 -.006008 -.000535 .000472 lremote | .000115 .002228 -.014885 -.003853 .04302 -.003269 -.000226 .024821 ldist | .001897 .003116 -.00797 -.001686 -.011656 .014158 -.000244 .010194 .230422 lopen | .000033 -.000056 -.001858 .00117 .002298 .00072 -.000048 .00026 .000579 english | -.000924 -.000656 .002867 .00187 -.002019 .00524 .000687 -.000638 .057562 white | .004312 -.032881 .044102 -.008677 -.26626 .047905 .002509 -.00555 .13715 lwhitemg | -.000433 .0014 -.005393 .000196 .032854 -.003943 -.000103 .002669 -.017573 _cons | .006027 -.035532 6.83187 -.479474 -25.0377 -.160862 .072937 -.633004 -2.20429</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002297 english | -.000293 .089689 white | -.002757 .11691 6.46977 lwhitemg | .000323 -.011605 -.684923 .074424 _cons | -.007123 -.66729 1.93615 -.22563 266.601</p><p>. . . clear</p><p>. insheet using k:\book1.txt (104 vars, 1010 obs)</p><p>. *Dropping Madagascar . drop if ccode==164500 (10 observations deleted)</p><p>. . . *Descriptive stats after dropping . tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist open english gdpdfration > ew white whitemg, stat(n mean sd median min max) col(stat) </p><p> variable | N mean sd p50 min max ------+------rimp | 1000 491195.3 1561183 8397.5 0 1.39e+07 immig | 1000 33461.85 117038.6 2986.5 0 1137050 gdp | 1000 2.79e+11 9.69e+11 1.74e+10 1.92e+08 8.99e+12 gdpau | 1000 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 1000 105.7593 16.9164 103.0148 60.87417 207.3465 gdpdfau | 1000 100.7173 4.633489 100.8223 94.42464 109.9797 pop | 1000 4.95e+07 1.54e+08 1.02e+07 41000 1.26e+09 popau | 1000 1.82e+07 612793.8 1.82e+07 1.73e+07 1.92e+07 xrate1 | 1000 1018.022 10900.66 13.89535 .0068 270182.6 remote | 1000 6698.917 4127.608 6764 1293 39620 dist | 1000 13349.21 3526.543 14215 2409 17972 open | 1000 .7098099 .3896246 .63885 .0671 3.2192 english | 1000 .38 .4856293 0 0 1 gdpdfratio~w | 1000 1.053075 .1810729 1.01867 .5844526 2.009028 white | 1000 .13 .3364717 0 0 1 whitemg | 1000 20501.65 116468.1 0 0 1137050 ------</p><p>. . sort white</p><p>. *IIIB. Descriptives Original Unites(sub sample for "white" and "non-white" countries)--RHS Variables > : . by white: tabstat rimp immig gdp gdpau gdpdefnew gdpdfau pop popau xrate1 remote dist phone open eng > lish gdpdfrationew white whitemg, stat(n mean sd median min max) col(stat) </p><p>------> white = 0</p><p> variable | N mean sd p50 min max ------+------rimp | 870 404944.2 1597577 3443.5 0 1.39e+07 immig | 870 14896.77 27125.19 1606 0 158613 gdp | 870 2.37e+11 1.00e+12 1.09e+10 1.92e+08 8.99e+12 gdpau | 870 3.83e+11 4.44e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 870 104.8959 17.27829 101.7941 60.87417 207.3465 gdpdfau | 870 100.7173 4.633836 100.8223 94.42464 109.9797 pop | 870 5.34e+07 1.65e+08 1.03e+07 41000 1.26e+09 popau | 870 1.82e+07 612839.6 1.82e+07 1.73e+07 1.92e+07 xrate1 | 870 1154.147 11680.96 19.96485 .0068 270182.6 remote | 870 7119.247 4099.743 6927 1293 39620 dist | 870 13176.56 3413.819 14040 2410 17972 phone | 870 159.3281 241.8403 49.865 .54 1449.75 open | 870 .7174614 .4110728 .63875 .0671 3.2192 english | 870 .3908046 .4882114 0 0 1 gdpdfratio~w | 870 1.044723 .1859863 1 .5844526 2.009028 white | 870 0 0 0 0 0 whitemg | 870 0 0 0 0 0 ------</p><p>------> white = 1</p><p> variable | N mean sd p50 min max ------+------rimp | 130 1068414 1138347 522863.5 40432 3843839 immig | 130 157705 288518.8 21174 2612 1137050 gdp | 130 5.56e+11 6.58e+11 2.54e+11 5.15e+10 2.69e+12 gdpau | 130 3.83e+11 4.46e+10 3.80e+11 3.19e+11 4.52e+11 gdpdefnew | 130 111.5379 12.89742 112.2247 85.45601 143.9587 gdpdfau | 130 100.7173 4.649088 100.8223 94.42464 109.9797 pop | 130 2.34e+07 2.55e+07 8837000 3477200 8.22e+07 popau | 130 1.82e+07 614856.7 1.82e+07 1.73e+07 1.92e+07 xrate1 | 130 107.0323 293.6987 4.4722 .3774 1261.556 remote | 130 3885.938 3089.96 2888 1530 12501 dist | 130 14504.62 4031.974 15931 2409 17493 phone | 130 734.716 269.9717 652.085 343.99 1487.08 open | 130 .6586038 .1850905 .64065 .3517 1.2967 english | 130 .3076923 .4633239 0 0 1 gdpdfratio~w | 130 1.108974 .1314272 1.116445 .8254872 1.441221 white | 130 1 0 1 1 1 whitemg | 130 157705 288518.8 21174 2612 1137050 ------</p><p>. . . **Regression of Imports . tsset ccode year panel variable: ccode, 117100 to 725980 time variable: year, 1991 to 2000</p><p>. . **I. Aggregate Imports . xtgls lrimp limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8905.35 Log likelihood = -523.8448 Prob > chi2 = 0.0000</p><p>------lrimp | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .350199 .030944 11.32 0.000 .2895498 .4108482 lgdp | 1.207809 .0326535 36.99 0.000 1.143809 1.271809 lgdpau | .0653656 .6090698 0.11 0.915 -1.128389 1.25912 lgdpdfrati~w | -.9002158 .2478832 -3.63 0.000 -1.386058 -.4143736 lpopau | -2.518097 2.100886 -1.20 0.231 -6.635757 1.599563 lpop | .0077733 .0410088 0.19 0.850 -.0726025 .0881491 lxrate1 | -.1310367 .0178795 -7.33 0.000 -.1660798 -.0959935 lremote | -.4569981 .0722649 -6.32 0.000 -.5986347 -.3153615 ldist | -2.054839 .1589762 -12.93 0.000 -2.366426 -1.743251 lopen | .2785901 .0569423 4.89 0.000 .1669851 .390195 english | .965659 .1219528 7.92 0.000 .726636 1.204682 white | 4.768119 .5534931 8.61 0.000 3.683292 5.852945 lwhitemg | -.4497924 .0496798 -9.05 0.000 -.5471631 -.3524218 _cons | 41.75315 19.37002 2.16 0.031 3.788601 79.7177 ------. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000958 lgdp | -.000329 .001066 lgdpau | -.000908 .00134 .370966 lgdpdfrati~w | -.000812 .000179 -.009364 .061446 lpopau | .001971 -.007984 -1.2546 .049252 4.41372 lpop | -.000124 -.000732 .000085 .000169 -.000072 .001682 lxrate1 | .000087 .000134 .000346 .00017 -.002396 -.000105 .00032 lremote | .000488 .00014 -.000282 -.001654 -.004271 -.000225 .000132 .005222 ldist | .001505 .000658 -.000092 -.001346 -.010278 .000043 .001722 .006117 .025273 lopen | -.000191 .000629 .002472 .000767 -.017308 .000343 .000113 .001353 .000379 english | -.001228 .002521 .002959 .002456 -.010826 -.001127 .000462 -.003088 .000895 white | .004616 -.001189 .002926 -.009226 -.024488 .005011 -.000327 -.002139 .001303 lwhitemg | -.000559 .000129 -.000219 .000874 .00243 -.000396 .000027 .000212 -.000371 _cons | -.024308 .076904 11.0661 -.610794 -40.0571 -.007527 .009917 -.023907 -.149701</p><p>| lopen english white lwhitemg _cons ------+------lopen | .003242 english | -.000577 .014872 white | -.000517 .006552 .306355 lwhitemg | -.000029 -.000349 -.027139 .002468 _cons | .189285 .075268 .242737 -.025085 375.198</p><p>. . **II. Conservative Estimates . *2.1. Aggregate reference priced Imports (conservative) . xtgls lrrefp_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 68190.22 Log likelihood = -958.787 Prob > chi2 = 0.0000</p><p>------lrrefp_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0435297 .0133641 3.26 0.001 .0173366 .0697228 lgdp | 1.622016 .0505591 32.08 0.000 1.522922 1.72111 lgdpau | 1.016962 .3490694 2.91 0.004 .3327987 1.701126 lgdpdfrati~w | -.4265167 .1446203 -2.95 0.003 -.7099672 -.1430662 lpopau | -6.888586 1.177659 -5.85 0.000 -9.196755 -4.580416 lpop | -.3610128 .0842077 -4.29 0.000 -.5260568 -.1959687 lxrate1 | -.115944 .0199146 -5.82 0.000 -.1549758 -.0769121 lremote | -.9858146 .089024 -11.07 0.000 -1.160298 -.8113308 ldist | -3.21118 .1584535 -20.27 0.000 -3.521743 -2.900617 lopen | -.0585401 .0260591 -2.25 0.025 -.1096149 -.0074653 english | 1.029008 .085388 12.05 0.000 .8616508 1.196366 white | 4.604755 .7495728 6.14 0.000 3.13562 6.073891 lwhitemg | -.4562858 .0716333 -6.37 0.000 -.5966845 -.3158871 _cons | 100.4251 11.0421 9.09 0.000 78.78301 122.0672 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000179 lgdp | -.000249 .002556 lgdpau | -.00113 .001568 .121849 lgdpdfrati~w | -.000566 .000414 -.01145 .020915 lpopau | .004488 -.006357 -.402376 .023133 1.38688 lpop | .000157 -.004018 -.001288 .000561 .00321 .007091 lxrate1 | -.000027 .00026 -.000101 .000397 -.002859 -.00028 .000397 lremote | .00042 .000628 -.005915 -.002932 .020846 -.001587 .000099 .007925 ldist | .000589 -.001226 -.005797 -.001244 .013993 .002049 .000542 .003368 .025108 lopen | .000043 -.00008 -.000899 .000893 .003346 .000225 -.000071 .000546 .00017 english | -.000395 .000164 .002752 .002531 -.018768 .000387 .001071 -.002541 .002343 white | .001154 -.012134 -.01004 -.002971 .036795 .018504 -.000545 .004703 -.026058 lwhitemg | -.000089 .000645 .000453 .000177 -.002497 -.0009 .000102 -1.3e-06 .003434 _cons | -.051163 .075629 3.58663 -.08197 -12.7098 -.045475 .040878 -.281136 -.361223</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000679 english | -.000389 .007291 white | .00155 -.001118 .561859 lwhitemg | -.000123 .000339 -.052369 .005131 _cons | -.040672 .224036 -.149808 -.004549 121.928</p><p>. . *2.2. Aggregate Differentiated Imports (conservative) . xtgls lrdiff_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 7836.65 Log likelihood = -920.6673 Prob > chi2 = 0.0000</p><p>------lrdiff_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1938123 .0300463 6.45 0.000 .1349225 .252702 lgdp | 1.647381 .0745003 22.11 0.000 1.501364 1.793399 lgdpau | -.0120089 .6440731 -0.02 0.985 -1.274369 1.250351 lgdpdfrati~w | -.259673 .2592182 -1.00 0.316 -.7677313 .2483853 lpopau | -1.854984 2.240903 -0.83 0.408 -6.247072 2.537105 lpop | -.5871586 .0799982 -7.34 0.000 -.7439523 -.430365 lxrate1 | -.1625528 .0289517 -5.61 0.000 -.2192972 -.1058085 lremote | -.3955792 .1318755 -3.00 0.003 -.6540505 -.137108 ldist | -3.370465 .3446903 -9.78 0.000 -4.046046 -2.694885 lopen | .1108739 .0484189 2.29 0.022 .0159746 .2057732 english | .7808588 .1326405 5.89 0.000 .5208881 1.040829 white | 9.233787 1.849945 4.99 0.000 5.607963 12.85961 lwhitemg | -.8038401 .1854045 -4.34 0.000 -1.167226 -.440454 _cons | 42.45297 21.14235 2.01 0.045 1.014735 83.89121 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000903 lgdp | -.001407 .00555 lgdpau | -.002197 .005307 .41483 lgdpdfrati~w | -.001134 .0027 -.026909 .067194 lpopau | .005818 -.024629 -1.40424 .09586 5.02164 lpop | .000936 -.004459 -.003321 -.001641 .01362 .0064 lxrate1 | .000074 .000503 .000418 .001041 -.006847 -.000796 .000838 lremote | -.000072 -.00045 -.005757 -.00164 .013588 -.001267 .000218 .017391 ldist | .003963 .004228 -.010305 -.003039 -.01819 .000098 .001835 .009233 .118811</p><p> lopen | .000117 -.000625 .000661 .001662 -.003958 .001275 -.000205 .000391 -.000913 english | -.001386 .0042 .005389 .003959 -.027947 -.000695 .001966 -.004628 .003101 white | .002132 -.028092 .00849 -.000526 -.000841 .019776 .004184 .012364 -.136285 lwhitemg | -.000165 .001527 -.002163 -.000512 .006412 -.001285 -.000438 .00092 .011407 _cons | -.062327 .181527 12.5327 -.942329 -46.2084 -.128777 .079613 -.285619 -.761743</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002344 english | -.001398 .017594 white | .003405 .006192 3.4223 lwhitemg | -.000247 -.001515 -.336329 .034375 _cons | .047765 .241429 1.26539 -.177592 446.999</p><p>. . *2.3. Aggregate Homogenous Imports (conservative) . xtgls lrhomo_cm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2154.99 Log likelihood = -1122.992 Prob > chi2 = 0.0000</p><p>------lrhomo_cm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1127955 .0521967 2.16 0.031 .0104918 .2150992 lgdp | .9180785 .0867671 10.58 0.000 .7480181 1.088139 lgdpau | -.5903831 .857669 -0.69 0.491 -2.271383 1.090617 lgdpdfrati~w | -.4202731 .3552574 -1.18 0.237 -1.116565 .2760186 lpopau | .4577676 2.93612 0.16 0.876 -5.296922 6.212457 lpop | .0723054 .1006758 0.72 0.473 -.1250155 .2696264 lxrate1 | -.1237999 .0336423 -3.68 0.000 -.1897376 -.0578622 lremote | .58095 .2374991 2.45 0.014 .1154603 1.04644 ldist | -1.611617 .3521142 -4.58 0.000 -2.301748 -.9214857 lopen | .3467378 .0806842 4.30 0.000 .1885998 .5048759 english | 1.610031 .250552 6.43 0.000 1.118958 2.101104 white | 1.911109 2.236285 0.85 0.393 -2.471929 6.294147 lwhitemg | .1498662 .1968034 0.76 0.446 -.2358613 .5355937 _cons | -.9037895 27.89859 -0.03 0.974 -55.58402 53.77644 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002724 lgdp | -.0026 .007529 lgdpau | -.003091 .002508 .735596 lgdpdfrati~w | -.001612 .002883 -.009405 .126208 lpopau | .007868 -.013314 -2.4588 .034284 8.6208 lpop | .000427 -.005975 -.000168 -.001292 -.000832 .010136 lxrate1 | .000155 .000869 .000352 .002015 -.007168 -.001152 .001132 lremote | .001379 .000713 -.029935 -.01527 .090666 .000552 -.000677 .056406 ldist | .006485 -.009007 -.023122 -.00956 .071851 .011019 -.000097 .022023 .123984 lopen | .000349 -.001177 .004471 .002184 -.025828 .002912 -.000204 .002077 -.00052 english | -.005537 .003155 .012652 .008498 -.027638 -.001168 .001357 -.015331 .009731 white | .004568 -.025265 .100155 .001906 -.408198 .022056 .000621 .040376 -.03282 lwhitemg | -.000744 .001177 -.010484 -.001419 .0437 -.000345 -.000197 -.000588 .006556 _cons | -.081875 .167585 21.9433 -.268674 -79.7776 -.114237 .108387 -1.43283 -1.96149</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00651 english | -.002115 .062776 white | .006456 .034728 5.00097 lwhitemg | -.000377 -.002203 -.428905 .038732 _cons | .280159 .112498 4.29258 -.524007 778.331</p><p>. . **III. Liberal Estimates . *3.1. Aggregate reference priced Imports (liberal) . xtgls lrrefp_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 62072.36 Log likelihood = -892.5478 Prob > chi2 = 0.0000</p><p>------lrrefp_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0244877 .0139006 1.76 0.078 -.0027569 .0517323 lgdp | 1.492558 .0531501 28.08 0.000 1.388386 1.59673 lgdpau | .5940596 .3666025 1.62 0.105 -.1244682 1.312587 lgdpdfrati~w | -.2519714 .1369028 -1.84 0.066 -.520296 .0163531 lpopau | -6.469706 1.241112 -5.21 0.000 -8.902241 -4.037172 lpop | -.0475321 .0905062 -0.53 0.599 -.2249211 .1298569 lxrate1 | -.0429211 .018396 -2.33 0.020 -.0789766 -.0068656 lremote | -.5376293 .1499508 -3.59 0.000 -.8315276 -.2437311 ldist | -2.357991 .1646637 -14.32 0.000 -2.680726 -2.035256 lopen | -.0370637 .027853 -1.33 0.183 -.0916546 .0175273 english | 1.134968 .1123847 10.10 0.000 .9146979 1.355238 white | 4.17492 .8416499 4.96 0.000 2.525316 5.824523 lwhitemg | -.2972618 .0764272 -3.89 0.000 -.4470563 -.1474673 _cons | 90.08107 11.7197 7.69 0.000 67.11088 113.0513 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000193 lgdp | -.000195 .002825 lgdpau | -.000902 .002015 .134397 lgdpdfrati~w | -.000335 .000813 -.007411 .018742 lpopau | .003212 -.007066 -.446202 .011727 1.54036 lpop | .000104 -.004523 -.001639 -.000191 .003329 .008191 lxrate1 | 4.9e-06 .000211 -.000073 .00045 -.002462 -.000233 .000338 lremote | -.000011 -.000994 -.013909 -.004305 .050307 .000263 -.000196 .022485 ldist | .000858 -.005427 -.004245 .000999 .00406 .009454 .000646 -.002589 .027114 lopen | .000016 -.000088 -.000904 .000907 .00326 .000263 -.000066 .001155 .00026 english | -.000315 -.000467 .003451 .002533 -.017993 .00046 .000913 -.004271 .006698 white | .000425 -.015579 -.017445 -.002431 .032222 .027245 .002107 .019666 .030078 lwhitemg | -.000084 .000683 .000153 -.000239 .002083 -.00139 -.000233 .000661 -.001767 _cons | -.035531 .132305 4.03053 -.004777 -14.2416 -.13156 .035527 -.619199 -.228554</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000776 english | -.000462 .01263 white | .001073 .006418 .708374 lwhitemg | .00001 -.000356 -.0612 .005841 _cons | -.045666 .177591 -.62261 -.019744 137.351</p><p>. . *3.2. Aggregate Differentiated Imports (liberal) . xtgls lrdiff_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8368.75 Log likelihood = -948.9998 Prob > chi2 = 0.0000</p><p>------lrdiff_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2810862 .0339482 8.28 0.000 .214549 .3476234 lgdp | 1.545115 .0743391 20.78 0.000 1.399413 1.690817 lgdpau | -.1077476 .6450294 -0.17 0.867 -1.371982 1.156487 lgdpdfrati~w | -.119696 .2734465 -0.44 0.662 -.6556413 .4162492 lpopau | -1.257512 2.251181 -0.56 0.576 -5.669746 3.154723 lpop | -.5012245 .0813217 -6.16 0.000 -.6606121 -.3418369 lxrate1 | -.1430531 .0284845 -5.02 0.000 -.1988817 -.0872244 lremote | -.3615209 .1240176 -2.92 0.004 -.6045909 -.118451 ldist | -2.672649 .333724 -8.01 0.000 -3.326736 -2.018562 lopen | .1258376 .0512754 2.45 0.014 .0253395 .2263356 english | .7318637 .1328913 5.51 0.000 .4714016 .9923258 white | 9.641384 1.829814 5.27 0.000 6.055014 13.22775 lwhitemg | -.8544612 .1827213 -4.68 0.000 -1.212588 -.496334 _cons | 28.35034 21.3421 1.33 0.184 -13.47941 70.18009 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001152 lgdp | -.001741 .005526 lgdpau | -.00179 .003573 .416063 lgdpdfrati~w | -.001347 .003102 -.027656 .074773 lpopau | .005081 -.019057 -1.41021 .103823 5.06782 lpop | .001019 -.004519 -.001566 -.001984 .008349 .006613 lxrate1 | .000095 .000379 -.000037 .001193 -.005443 -.000686 .000811 lremote | .00004 -.000454 -.004069 -.001223 .006228 -.001144 .000198 .01538 ldist | .005085 .000098 -.010851 -.003796 -.010191 .001537 .001662 .009759 .111372 lopen | .000134 -.000703 .001511 .001684 -.008625 .001447 -.000253 .000289 -.001201 english | -.001762 .003952 .002813 .004597 -.017207 -.00067 .001921 -.004325 -.00167 white | .000735 -.025285 .015114 .000938 -.006201 .017939 .003891 .011265 -.153246 lwhitemg | .000013 .001426 -.002343 -.000648 .00462 -.001137 -.000371 .000783 .014419 _cons | -.067515 .177189 12.6024 -1.0629 -46.8868 -.104428 .070916 -.197698 -.748257</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002629 english | -.001598 .01766 white | .003797 .01009 3.34822 lwhitemg | -.00029 -.001621 -.328525 .033387 _cons | .106053 .180143 1.32303 -.171466 455.485</p><p>. . *3.3. Aggregate Homogenous Imports (liberal) . xtgls lrhomo_lm limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen eng > lish white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 8673.86 Log likelihood = -1099.884 Prob > chi2 = 0.0000</p><p>------lrhomo_lm | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .028666 .0158594 1.81 0.071 -.0024179 .05975 lgdp | 1.349307 .0494881 27.27 0.000 1.252312 1.446302 lgdpau | .6111014 .5139764 1.19 0.234 -.3962739 1.618477 lgdpdfrati~w | -.0559888 .1692802 -0.33 0.741 -.3877719 .2757944 lpopau | -5.909789 1.746988 -3.38 0.001 -9.333823 -2.485755 lpop | .0651657 .0681663 0.96 0.339 -.0684377 .1987691 lxrate1 | -.0656502 .0202449 -3.24 0.001 -.1053295 -.025971 lremote | -.9850661 .1620361 -6.08 0.000 -1.302651 -.6674813 ldist | -3.456394 .2192213 -15.77 0.000 -3.88606 -3.026728 lopen | .077978 .0429973 1.81 0.070 -.0062952 .1622512 english | 2.392756 .1376987 17.38 0.000 2.122871 2.66264 white | 3.892405 1.145717 3.40 0.001 1.64684 6.13797 lwhitemg | -.194354 .0957369 -2.03 0.042 -.3819949 -.006713 _cons | 95.01388 16.61695 5.72 0.000 62.44525 127.5825 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000252 lgdp | -.000412 .002449 lgdpau | -.000229 .000278 .264172 lgdpdfrati~w | -.000494 .00062 .002559 .028656 lpopau | -.001193 .000698 -.878823 -.006995 3.05197 lpop | .000217 -.002581 -.000507 .000139 -.000835 .004647 lxrate1 | -.000027 .000241 .00034 .000599 -.002621 -.00039 .00041 lremote | .000301 .000693 -.017362 -.001787 .053064 -.000837 -.000231 .026256 ldist | .000709 .000704 -.011509 -.001718 .023671 -.000021 .000281 .017176 .048058 lopen | .000088 -.000346 .000142 .002018 -.000052 .000738 -.000131 .000993 .000223 english | -.000825 .000543 .002561 .001812 -.009122 .001522 .001154 -.004228 .002206 white | .000383 -.012948 -.003996 -.000943 .00517 .022929 .000039 .002955 -.004415 lwhitemg | -8.0e-06 .000674 -.00092 .000142 .003391 -.00154 .000058 .00142 .002199 _cons | .022173 -.044879 7.90997 .036096 -28.2609 .018372 .03216 -.819997 -.720962</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001849 english | -.001417 .018961 white | .000805 .033203 1.31267 lwhitemg | 8.3e-06 -.002941 -.106088 .009166 _cons | -.018236 .055731 -.052545 -.056115 276.123</p><p>. . *IV. Aggregate NON-Manufacturing Imports (Sum of Sitc0,1,2,3,4) . xtgls lrmnmf limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 715.04 Log likelihood = -566.4255 Prob > chi2 = 0.0000</p><p>------lrmnmf | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3759706 .0391797 9.60 0.000 .2991798 .4527613 lgdp | .1644133 .0664861 2.47 0.013 .0341029 .2947237 lgdpau | -1.154015 .3543492 -3.26 0.001 -1.848527 -.4595035 lgdpdfrati~w | -.3596475 .1820213 -1.98 0.048 -.7164026 -.0028923 lpopau | 1.678536 1.211905 1.39 0.166 -.696753 4.053826 lpop | .3935006 .085578 4.60 0.000 .2257708 .5612305 lxrate1 | -.1734388 .0227663 -7.62 0.000 -.2180599 -.1288177 lremote | -.0471138 .1117259 -0.42 0.673 -.2660927 .171865 ldist | -1.60118 .380358 -4.21 0.000 -2.346668 -.8556922 lopen | .087382 .0331822 2.63 0.008 .0223461 .152418 english | .5867473 .2067211 2.84 0.005 .1815814 .9919133 white | 9.990434 .7119206 14.03 0.000 8.595095 11.38577 lwhitemg | -.9841776 .0715101 -13.76 0.000 -1.124335 -.8440203 _cons | 13.25128 11.76644 1.13 0.260 -9.810516 36.31308 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001535 lgdp | -.001376 .00442 lgdpau | .000364 .00007 .125563 lgdpdfrati~w | -.000703 .00166 .003123 .033132 lpopau | -.001853 -.002319 -.412655 .010522 1.46871 lpop | .000024 -.003234 -.002105 -.001033 .000785 .007324 lxrate1 | .00005 .000344 .002696 .001141 -.009441 -.000547 .000518 lremote | .001158 .001013 -.005667 -.002812 .011269 -.001183 -.000152 .012483 ldist | .002249 -.00841 .000369 -.003155 -.032081 .017103 .000664 .01251 .144672 lopen | -2.8e-07 -.000284 -.002371 -.000302 .004076 .000569 -.000195 .000247 .000361 english | -.002201 .001234 .007058 .004038 -.031784 .005238 .001369 -.000528 .011358 white | .008759 -.007464 .021047 .005144 -.097691 .012612 .003442 .001578 -.019588 lwhitemg | -.000762 .000019 -.002249 -.000839 .009939 -.000438 -.000384 .000202 .005459 _cons | .011099 .062227 3.6089 -.261169 -13.2442 -.149935 .077562 -.274573 -1.06037</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001101 english | -.000846 .042734 white | -.000886 .052541 .506831 lwhitemg | .000145 -.002741 -.04836 .005114 _cons | -.011158 .106007 1.09441 -.143409 138.449</p><p>. . *V. Aggregate Manufacturing Imports (Sum of Sitc5,6,7,8,9) . xtgls lrmmfn limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen english > white lwhitemg, igls panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 2396.18 Log likelihood = -607.164 Prob > chi2 = 0.0000</p><p>------lrmmfn | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1948488 .0420923 4.63 0.000 .1123494 .2773483 lgdp | .2872809 .0625682 4.59 0.000 .1646495 .4099124 lgdpau | -.1516053 .0914356 -1.66 0.097 -.3308159 .0276052 lgdpdfrati~w | -.135572 .0567492 -2.39 0.017 -.2467985 -.0243456 lpopau | 2.908666 .359743 8.09 0.000 2.203583 3.613749 lpop | .744204 .1053639 7.06 0.000 .5376947 .9507134 lxrate1 | -.0207572 .0109476 -1.90 0.058 -.0422141 .0006998 lremote | .1423179 .0418729 3.40 0.001 .0602485 .2243873 ldist | -3.11409 .3628592 -8.58 0.000 -3.825281 -2.402899 lopen | -.0188349 .0381191 -0.49 0.621 -.0935468 .0558771 english | .5538998 .2767138 2.00 0.045 .0115508 1.096249 white | 23.80502 2.98186 7.98 0.000 17.96068 29.64936 lwhitemg | -2.264446 .2770674 -8.17 0.000 -2.807488 -1.721404 _cons | -29.22616 5.950128 -4.91 0.000 -40.88819 -17.56412 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001772 lgdp | -.001134 .003915 lgdpau | -.001292 -.000061 .00836 lgdpdfrati~w | .000511 -.001465 .001457 .00322 lpopau | .008129 -.002827 -.028602 .0001 .129415 lpop | -.0002 -.002978 .001333 .000711 -.005572 .011102 lxrate1 | -9.9e-06 .000094 -.000075 .00002 .000964 -.000282 .00012 lremote | -.000545 .001564 -.001047 -.001639 -.00026 -.000964 .000077 .001753 ldist | .006254 -.001745 -.005312 .000305 .033223 -.00151 -.000269 -.000491 .131667 lopen | -.000499 -.000199 .000328 -.000708 -.006482 .001428 -.000247 .000391 -.001053 english | -.000771 .000211 .000771 .000299 -.00572 .000302 .000045 -.000241 .054286 white | .006711 -.009155 -.000791 .003465 .008476 .030129 -.000818 -.003946 .029685 lwhitemg | -.00105 .000469 .000436 -.000252 -.003465 -.002996 .000086 .000301 -.006372 _cons | -.138312 .015705 .30221 -.012966 -1.60992 -.025597 -.010289 .00557 -1.64243</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001453 english | -.000227 .076571</p><p> white | .001597 .035606 8.89149 lwhitemg | .000017 -.002729 -.813441 .076766 _cons | .093253 -.466906 -.704274 .148896 35.404</p><p>. . **VI. SITC-1 Digit Level Disaggregate Imports . xtgls lrmsitc0 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 563.08 Log likelihood = -546.5859 Prob > chi2 = 0.0000</p><p>------lrmsitc0 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .6021546 .0502521 11.98 0.000 .5036624 .7006469 lgdp | -.0204965 .07796 -0.26 0.793 -.1732953 .1323022 lgdpau | 1.903633 .7892457 2.41 0.016 .3567401 3.450526 lgdpdfrati~w | -.7180214 .2839261 -2.53 0.011 -1.274506 -.1615365 lpopau | -9.416815 2.711026 -3.47 0.001 -14.73033 -4.103302 lpop | .2985048 .0954696 3.13 0.002 .1113878 .4856218 lxrate1 | -.1216981 .0257698 -4.72 0.000 -.172206 -.0711901 lremote | -.0812113 .2534956 -0.32 0.749 -.5780535 .4156309 ldist | -1.447337 .309285 -4.68 0.000 -2.053524 -.841149 lopen | .0322873 .0544637 0.59 0.553 -.0744596 .1390341 english | -.0983058 .2196202 -0.45 0.654 -.5287535 .3321419 white | 9.592884 1.096593 8.75 0.000 7.443601 11.74217 lwhitemg | -.8840321 .0987096 -8.96 0.000 -1.077499 -.6905647 _cons | 119.0635 25.70289 4.63 0.000 68.68673 169.4402 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002525 lgdp | -.00153 .006078 lgdpau | .000101 .000057 .622909 lgdpdfrati~w | -.001384 .001829 -.016325 .080614 lpopau | -.004508 -.007263 -2.07948 .066425 7.34966 lpop | -.000104 -.004363 -.000982 -.000905 .002021 .009114 lxrate1 | .000169 -.000169 .00053 .000777 -.004686 -.000435 .000664 lremote | .001466 .004258 -.021889 -.011897 .061038 -.002757 .000379 .06426 ldist | .00457 .001204 -.009255 -.002447 -.010337 .004263 .001002 .028976 .095657 lopen | -.000338 .000872 5.6e-06 -.000783 -.009471 .000513 -7.3e-06 .001357 .002082 english | -.002157 .001658 .004908 .005068 -.021777 -.000523 .000965 -.011498 .020164 white | .015054 -.026927 .013865 -.008735 -.0665 .028456 .005162 .017981 .013902 lwhitemg | -.001488 .001408 -.002728 -.000051 .013718 -.001609 -.000426 .000819 -.001077 _cons | .035017 .012161 18.4586 -.651186 -67.7214 -.068985 .057833 -1.32137 -.874443</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002966 english | -.000057 .048233 white | -.002831 .018525 1.20252 lwhitemg | .000162 -.001115 -.103657 .009744 _cons | .102858 .099715 .451044 -.144681 660.639</p><p>. xtgls lrmsitc1 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1386.54 Log likelihood = -359.8087 Prob > chi2 = 0.0000</p><p>------lrmsitc1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0552502 .0219676 2.52 0.012 .0121945 .098306 lgdp | .1892549 .0569126 3.33 0.001 .0777083 .3008015 lgdpau | -.2457003 .3087686 -0.80 0.426 -.8508757 .3594751 lgdpdfrati~w | -.4715472 .2041965 -2.31 0.021 -.871765 -.0713294 lpopau | 2.58224 1.099992 2.35 0.019 .4262942 4.738185 lpop | .1313005 .0703873 1.87 0.062 -.006656 .269257 lxrate1 | -.0797041 .0184615 -4.32 0.000 -.1158879 -.0435202 lremote | -.1355521 .1105648 -1.23 0.220 -.3522551 .0811509 ldist | -1.303289 .2075981 -6.28 0.000 -1.710174 -.8964038 lopen | .0075245 .0254376 0.30 0.767 -.0423322 .0573812 english | 1.988783 .2136642 9.31 0.000 1.570009 2.407557 white | 9.768106 1.781166 5.48 0.000 6.277084 13.25913 lwhitemg | -.7346536 .1834589 -4.00 0.000 -1.094226 -.3750807 _cons | -27.64365 11.15703 -2.48 0.013 -49.51102 -5.776282 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000483 lgdp | -.000487 .003239 lgdpau | .000326 -.001695 .095338 lgdpdfrati~w | -.001069 .000272 -.001211 .041696 lpopau | -.00138 .007327 -.326286 .022917 1.20998 lpop | .000107 -.002959 .001052 .00083 -.008332 .004954 lxrate1 | -.000026 .000184 .001207 .000772 -.005756 -.000162 .000341 lremote | .000201 .00096 -.007048 -.003655 .024832 -.000567 -.000354 .012225 ldist | .001181 .000507 -.001626 -.002696 -.000828 .002277 -.00035 .000717 .043097 lopen | .000025 -.000266 -.000155 .001051 -.00083 .000333 -9.6e-06 -.000126 -.000082 english | -.000464 -.002413 .003988 .004111 -.013966 .00456 .000308 -.004273 .013742 white | .002284 -.023748 .01531 .000415 -.083445 .025938 .000983 .009947 -.025201 lwhitemg | -.000244 .001424 -.001269 .000241 .006365 -.001771 -.000076 -.00041 .00113 _cons | .009211 -.113522 3.0041 -.352784 -11.7536 .081825 .066845 -.348064 -.408887</p><p>| lopen english white lwhitemg _cons ------+------lopen | .000647 english | -.000052 .045652 white | .001351 .070648 3.17255 lwhitemg | -.000068 -.006722 -.322314 .033657 _cons | .01973 .008008 1.2304 -.081651 124.479</p><p>. xtgls lrmsitc2 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1183.45 Log likelihood = -847.9559 Prob > chi2 = 0.0000</p><p>------lrmsitc2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .1868559 .0668312 2.80 0.005 .0558692 .3178425 lgdp | .5213881 .1117315 4.67 0.000 .3023984 .7403778 lgdpau | -2.199055 1.101452 -2.00 0.046 -4.357861 -.0402486 lgdpdfrati~w | -1.036328 .444208 -2.33 0.020 -1.90696 -.1656963 lpopau | 4.76751 3.774754 1.26 0.207 -2.630872 12.16589 lpop | .1357876 .1248829 1.09 0.277 -.1089784 .3805537 lxrate1 | -.1740134 .0396279 -4.39 0.000 -.2516826 -.0963442 lremote | 1.512144 .2812475 5.38 0.000 .9609089 2.063379 ldist | -1.627806 .4698912 -3.46 0.001 -2.548776 -.7068363 lopen | -.0208115 .0768937 -0.27 0.787 -.1715204 .1298975 english | .4041462 .2643323 1.53 0.126 -.1139357 .9222281 white | 11.0421 1.531712 7.21 0.000 8.040001 14.0442 lwhitemg | -.8805987 .146174 -6.02 0.000 -1.167095 -.5941028 _cons | -29.3637 35.47905 -0.83 0.408 -98.90137 40.17397 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .004466 lgdp | -.004856 .012484 lgdpau | -.002818 .00671 1.2132 lgdpdfrati~w | -.002089 .004847 .003108 .197321 lpopau | .006581 -.031348 -4.05509 .039074 14.2488 lpop | .001911 -.010586 -.003214 -.00292 .014599 .015596 lxrate1 | .000055 .001604 .000782 .001386 -.009287 -.001519 .00157 lremote | .001381 -.003112 -.034183 -.02295 .088282 .003279 .000916 .0791 ldist | .013062 -.011583 -.012177 -.011608 .009034 .013757 -.002517 .021631 .220798 lopen | .000324 -.000792 .006679 .000946 -.034241 .002121 -.000361 .002932 .004123 english | -.006562 .011759 .008571 .002167 -.032272 -.0091 -.000542 -.004206 .025029 white | .028387 -.05472 -.05149 -.047572 .103522 .052718 .005581 .135185 .136333 lwhitemg | -.003137 .003401 .000778 .001681 .007096 -.002746 -.000821 -.005522 -.017163 _cons | -.113429 .38199 35.772 -.675653 -130.523 -.324957 .130704 -1.4407 -2.12998</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005913 english | -.000943 .069872 white | .001471 .027636 2.34614 lwhitemg | -.000014 -.004862 -.21349 .021367 _cons | .316369 .007358 -2.60479 .059901 1258.76</p><p>. xtgls lrmsitc3 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 563.44 Log likelihood = -122.3243 Prob > chi2 = 0.0000</p><p>------lrmsitc3 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0407938 .031646 1.29 0.197 -.0212311 .1028188 lgdp | .1479184 .0598462 2.47 0.013 .030622 .2652148 lgdpau | .3688056 .4053562 0.91 0.363 -.4256779 1.163289 lgdpdfrati~w | .3406944 .1843902 1.85 0.065 -.0207037 .7020926 lpopau | 2.621244 1.433388 1.83 0.067 -.1881449 5.430634 lpop | .2914027 .079473 3.67 0.000 .1356385 .447167 lxrate1 | -.0309259 .0164493 -1.88 0.060 -.063166 .0013141 lremote | -.0193124 .1266686 -0.15 0.879 -.2675782 .2289534 ldist | -2.235456 .4203903 -5.32 0.000 -3.059406 -1.411506 lopen | .0578229 .0380933 1.52 0.129 -.0168387 .1324845 english | .8318357 .187174 4.44 0.000 .4649814 1.19869 white | 15.78097 1.212367 13.02 0.000 13.40478 18.15717 lwhitemg | -1.335253 .1128702 -11.83 0.000 -1.556474 -1.114031 _cons | -39.54008 14.78613 -2.67 0.007 -68.52037 -10.55979 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001001 lgdp | -.000769 .003582 lgdpau | -.00075 5.6e-06 .164314 lgdpdfrati~w | -.000928 .00093 -.000135 .034 lpopau | .002286 .001004 -.551103 .014925 2.0546 lpop | -.000145 -.002533 .000535 .00066 -.005422 .006316 lxrate1 | .000055 .000092 .000174 .00053 -.002611 -.000115 .000271 lremote | .000966 .00193 -.007475 -.003516 .021523 -.001634 .000119 .016045 ldist | .002709 -.004021 -.010287 -.008058 .001441 .008568 .000097 .016271 .176728 lopen | -.000018 -.000054 .000176 .000295 -.004427 .000531 -.000052 .000014 .000289 english | -.001437 -.000527 .003463 .00301 -.017136 .004777 .000152 -.004953 .006941 white | .004743 -.017131 .029244 -.004571 -.273214 .025238 .003674 -.004621 -.020159 lwhitemg | -.000549 .000968 -.002969 .000323 .026703 -.001922 -.00039 .000504 .002849 _cons | -.037558 -.032293 4.98866 -.199933 -19.7795 -.03458 .034887 -.473435 -1.64114</p><p>| lopen english white lwhitemg _cons ------+------lopen | .001451 english | .000114 .035034 white | -.000428 .04477 1.46983 lwhitemg | .00006 -.00382 -.133782 .01274 _cons | .05978 .102199 3.93608 -.383378 218.63</p><p>. xtgls lrmsitc4 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 261.69 Log likelihood = 153.9842 Prob > chi2 = 0.0000</p><p>------lrmsitc4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0013743 .0188678 -0.07 0.942 -.0383546 .0356059 lgdp | .2720122 .0506651 5.37 0.000 .1727104 .3713139 lgdpau | -.3285709 .3471327 -0.95 0.344 -1.008939 .3517968 lgdpdfrati~w | -.0908437 .1420242 -0.64 0.522 -.3692061 .1875186 lpopau | 4.427438 1.268455 3.49 0.000 1.941312 6.913564 lpop | -.0577724 .0604291 -0.96 0.339 -.1762113 .0606666 lxrate1 | -.098184 .015179 -6.47 0.000 -.1279343 -.0684336 lremote | .3552437 .1294301 2.74 0.006 .1015653 .6089221 ldist | -1.294612 .2806333 -4.61 0.000 -1.844644 -.7445812 lopen | .0267607 .0282771 0.95 0.344 -.0286615 .0821828 english | .2413245 .1656533 1.46 0.145 -.08335 .565999 white | 9.364656 2.052629 4.56 0.000 5.341576 13.38774 lwhitemg | -.7891813 .1959034 -4.03 0.000 -1.173145 -.4052178 _cons | -59.83748 13.52568 -4.42 0.000 -86.34732 -33.32764 ------</p><p>. vce | limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000356 lgdp | -.000363 .002567 lgdpau | .000294 -.000668 .120501 lgdpdfrati~w | -.000452 .000436 -.005832 .020171 lpopau | -.00265 .003948 -.414611 .026878 1.60898 lpop | .000048 -.002179 -.000182 -.000018 .001127 .003652 lxrate1 | 2.6e-06 5.4e-06 .000482 .000469 -.004351 -.000114 .00023 lremote | .000271 .001729 -.007779 -.001096 .027739 -.001367 -.000043 .016752 ldist | .001628 -.001673 -.002188 -.001365 .002363 .004672 .000091 .00722 .078755 lopen | -6.7e-06 6.5e-06 .000028 .000214 -.001344 .000172 -.000028 .000083 -.000497 english | -.00043 -.001813 -.000249 .000843 .021138 .004721 .000201 -.00095 .016339 white | .002555 -.01524 .016904 -.004946 -.138565 .015474 .001856 -.000537 .016031 lwhitemg | -.000292 .000965 -.002047 .000493 .014118 -.001221 -.000137 .000693 -.00253 _cons | .024643 -.068114 3.82564 -.300532 -16.1872 -.055807 .05921 -.487756 -.843336</p><p>| lopen english white lwhitemg _cons ------+------lopen | .0008 english | -.000296 .027441 white | -.000736 .034291 4.21329 lwhitemg | .000094 -.003194 -.395571 .038378 _cons | .023147 -.530774 1.77958 -.162885 182.944</p><p>. xtgls lrmsitc5 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 464.26 Log likelihood = -671.0474 Prob > chi2 = 0.0000</p><p>------lrmsitc5 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2070721 .0565753 3.66 0.000 .0961865 .3179576 lgdp | .7376085 .1060865 6.95 0.000 .5296827 .9455343 lgdpau | -.6517823 .6793523 -0.96 0.337 -1.983288 .6797236 lgdpdfrati~w | -.3917346 .2881181 -1.36 0.174 -.9564357 .1729665 lpopau | 3.639588 2.341626 1.55 0.120 -.9499136 8.22909 lpop | -.3132206 .1497 -2.09 0.036 -.6066273 -.0198139 lxrate1 | -.1514017 .0326068 -4.64 0.000 -.2153098 -.0874936 lremote | .119182 .2411646 0.49 0.621 -.3534918 .5918559 ldist | -3.03174 .6926704 -4.38 0.000 -4.389349 -1.674131 lopen | .0403269 .0670511 0.60 0.548 -.0910909 .1717446 english | -.4732403 .4330632 -1.09 0.274 -1.322029 .375548 white | 20.36441 4.116803 4.95 0.000 12.29562 28.4332 lwhitemg | -1.840837 .3789518 -4.86 0.000 -2.583569 -1.098105 _cons | -24.31554 23.0565 -1.05 0.292 -69.50545 20.87437 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .003201 lgdp | -.002623 .011254 lgdpau | .001339 -.001287 .461519 lgdpdfrati~w | -.002025 .003791 -.0113 .083012 lpopau | -.008988 -.000896 -1.53637 .06596 5.48321 lpop | -.000168 -.008203 -.001657 -.001916 -.006016 .02241 lxrate1 | .000141 .000542 .002057 .001282 -.010893 -.000755 .001063 lremote | .000777 .004331 -.020636 -.012748 .039716 -.002146 .000747 .05816 ldist | .012872 .009783 -.005558 -.004722 -.057101 .005715 .00063 .032794 .479792 lopen | .000485 -.001104 -.000874 -.000137 -.011619 .002002 -.000198 .000692 .003494 english | -.00675 .003055 .001656 .006267 -.016099 .018334 .000476 -.004329 .124876 white | .008625 -.036519 .127604 .018423 -.373686 .077245 .005516 .032142 .259099 lwhitemg | -.001502 .001626 -.013428 -.00302 .042809 -.00585 -.000624 -.000272 -.039584 _cons | .033128 -.199463 13.6633 -.777188 -50.3497 -.05936 .107915 -.996302 -4.16208</p><p>| lopen english white lwhitemg _cons ------+------lopen | .004496 english | -.001495 .187544 white | .005033 .292919 16.9481 lwhitemg | -.000348 -.031578 -1.53328 .143604 _cons | .171664 -1.3026 -.473676 .098249 531.602</p><p>. xtgls lrmsitc6 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1178.41 Log likelihood = -564.1089 Prob > chi2 = 0.0000</p><p>------lrmsitc6 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .2305849 .0486089 4.74 0.000 .1353132 .3258567 lgdp | .6444952 .1024041 6.29 0.000 .4437869 .8452035 lgdpau | .7776032 .644203 1.21 0.227 -.4850114 2.040218 lgdpdfrati~w | .0035669 .2818617 0.01 0.990 -.548872 .5560058 lpopau | -3.362473 2.22778 -1.51 0.131 -7.72884 1.003895 lpop | .4318276 .1304898 3.31 0.001 .1760723 .6875829 lxrate1 | -.100631 .0298928 -3.37 0.001 -.1592199 -.0420422 lremote | -.3592211 .2301287 -1.56 0.119 -.810265 .0918229 ldist | -2.218963 .4492226 -4.94 0.000 -3.099423 -1.338502 lopen | -.0896501 .0737484 -1.22 0.224 -.2341942 .0548941 english | 1.103799 .3261657 3.38 0.001 .4645265 1.743072 white | 23.79746 3.01195 7.90 0.000 17.89414 29.70077 lwhitemg | -2.309896 .2679935 -8.62 0.000 -2.835154 -1.784639 _cons | 41.10498 21.50627 1.91 0.056 -1.04654 83.2565 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .002363 lgdp | -.002099 .010487 lgdpau | -.002455 .005435 .414997 lgdpdfrati~w | -.00187 .003363 -.008713 .079446 lpopau | .007648 -.035931 -1.38772 .030772 4.963 lpop | .000371 -.008726 -.003894 -.002782 .018146 .017028 lxrate1 | .000053 .000673 .000588 .00132 -.006093 -.000818 .000894 lremote | .00045 .003559 -.018027 -.01722 .040369 -.002087 .000573 .052959 ldist | .008398 -.003663 -.010928 -.003154 .005696 .016845 .000509 .008442 .201801 lopen | .000253 -.000022 .000536 .002096 -.014344 .001329 -.000074 .001512 .001712 english | -.003668 .003206 .00671 .006394 -.027179 -.001437 .000723 -.008608 .05734 white | .006435 -.036085 .015038 -.01678 -.008741 .060383 .00461 .036039 .038068 lwhitemg | -.000946 .001278 -.003157 -.000111 .01085 -.004117 -.000473 -.000449 -.007456 _cons | -.114942 .365088 12.3525 -.20571 -45.8816 -.410502 .069166 -.772093 -2.03734</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005439 english | -.001966 .106384 white | .004142 -.000773 9.07184 lwhitemg | -.000472 .001505 -.792267 .071821 _cons | .174299 -.261535 -1.12506 .020942 462.52</p><p>. xtgls lrmsitc7 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1839.61 Log likelihood = -747.5652 Prob > chi2 = 0.0000</p><p>------lrmsitc7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .0737752 .0348527 2.12 0.034 .0054653 .1420852 lgdp | .9643866 .0961118 10.03 0.000 .7760109 1.152762 lgdpau | .9559258 .6896655 1.39 0.166 -.3957937 2.307645 lgdpdfrati~w | -.0868805 .2746232 -0.32 0.752 -.6251321 .451371 lpopau | 3.308764 2.398676 1.38 0.168 -1.392555 8.010084 lpop | -.3539617 .1436115 -2.46 0.014 -.6354351 -.0724883 lxrate1 | -.1544945 .0219454 -7.04 0.000 -.1975068 -.1114822 lremote | -.3670914 .1900582 -1.93 0.053 -.7395987 .0054159 ldist | -1.586715 .7396276 -2.15 0.032 -3.036358 -.1370715 lopen | -.053701 .0726372 -0.74 0.460 -.1960673 .0886652 english | .0961114 .3349293 0.29 0.774 -.5603381 .7525608 white | 28.76997 2.650678 10.85 0.000 23.57474 33.9652 lwhitemg | -2.676275 .2568915 -10.42 0.000 -3.179773 -2.172776 _cons | -75.12673 24.16309 -3.11 0.002 -122.4855 -27.76794 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .001215 lgdp | -.001922 .009237 lgdpau | -.000641 .002193 .475638 lgdpdfrati~w | -.002065 .004248 -.014371 .075418 lpopau | -.004818 -.011415 -1.58516 .053987 5.75365 lpop | .001729 -.011489 -.00564 -.004165 .031018 .020624 lxrate1 | .000051 .000294 .00034 .000758 -.008302 -.00063 .000482 lremote | .001433 .003353 -.017654 -.004825 .018275 -.001915 .000343 .036122 ldist | .007008 .010404 -.027763 -.00551 -.038256 .014643 .001243 .066443 .547049 lopen | .000325 -.000904 -.000151 .004296 -.00857 .001227 -.000325 .000978 .001369 english | -.00114 .002752 .002399 .002906 -.006481 .00012 .000769 .000995 .064803 white | .017859 -.057709 .010546 -.032259 -.307242 .071262 .008313 .039849 .111427 lwhitemg | -.001616 .00398 -.002489 .002352 .036361 -.005172 -.000813 -.002877 -.017608 _cons | .029288 -.020159 14.2924 -.520263 -53.914 -.555882 .114139 -.839463 -4.95542</p><p>| lopen english white lwhitemg _cons ------+------lopen | .005276 english | -.001515 .112178 white | -.006461 .20878 7.02609 lwhitemg | .000837 -.023368 -.67076 .065993 _cons | .125017 -.657442 3.48105 -.342874 583.855</p><p>. xtgls lrmsitc8 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression</p><p>Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 545.64 Log likelihood = -568.0191 Prob > chi2 = 0.0000</p><p>------lrmsitc8 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | .3808947 .0580618 6.56 0.000 .2670956 .4946937 lgdp | .304148 .0994075 3.06 0.002 .1093128 .4989832 lgdpau | 1.086271 .7386554 1.47 0.141 -.3614669 2.534009 lgdpdfrati~w | -.5116418 .3139552 -1.63 0.103 -1.126983 .1036991 lpopau | -4.502784 2.550657 -1.77 0.078 -9.50198 .4964118 lpop | .316336 .1058409 2.99 0.003 .1088916 .5237803 lxrate1 | -.0984265 .0339469 -2.90 0.004 -.1649612 -.0318918 lremote | -.0387952 .2270752 -0.17 0.864 -.4838543 .406264 ldist | -1.429592 .5807754 -2.46 0.014 -2.567891 -.291293 lopen | .0870983 .0729378 1.19 0.232 -.0558571 .2300538 english | -.0076502 .2791975 -0.03 0.978 -.5548672 .5395669 white | 19.19328 2.102043 9.13 0.000 15.07335 23.31321 lwhitemg | -1.808922 .1994223 -9.07 0.000 -2.199782 -1.418061 _cons | 51.19611 24.16472 2.12 0.034 3.83413 98.5581 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .003371 lgdp | -.003273 .009882 lgdpau | -.002313 .006339 .545612 lgdpdfrati~w | -.00247 .005654 -.008638 .098568 lpopau | .005399 -.034294 -1.82453 .046922 6.50585 lpop | .001122 -.006377 -.004124 -.003914 .010583 .011202 lxrate1 | .000324 .000433 -.000235 .000806 -.003534 -.000603 .001152 lremote | .000051 .00297 -.010227 -.016951 .001043 .000933 .001405 .051563 ldist | .011221 .000873 -.006021 -.010952 -.068632 .007051 .000708 .036621 .3373 lopen | -.000286 .000708 .00231 .000245 -.023571 .001765 -.000185 .002323 .003625 english | -.003735 .007165 .005471 .001993 -.025134 -.000394 -.00137 .007733 .089475 white | .022673 -.040398 -.007111 -.069702 .097306 .016178 .000032 .110766 .204127 lwhitemg | -.002571 .002328 -.001168 .004234 .00171 -.000474 -.000318 -.007706 -.029941 _cons | -.098741 .258281 16.0458 -.450965 -58.9247 -.177659 .040577 -.622868 -2.4301</p><p>| lopen english white lwhitemg _cons ------+------lopen | .00532 english | -.000165 .077951 white | -.007788 .1366 4.41859 lwhitemg | .000732 -.016355 -.410098 .039769 _cons | .238001 -.791702 -3.81267 .326819 583.934</p><p>. xtgls lrmsitc9 limmig lgdp lgdpau lgdpdfrationew lpopau lpop lxrate1 lremote ldist lopen engl > ish white lwhitemg, panels(hetero)corr(psar1)nolog</p><p>Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic Correlation: panel-specific AR(1)</p><p>Estimated covariances = 100 Number of obs = 1000 Estimated autocorrelations = 100 Number of groups = 100 Estimated coefficients = 14 Time periods = 10 Wald chi2(13) = 1468.09 Log likelihood = -270.0867 Prob > chi2 = 0.0000</p><p>------lrmsitc9 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------+------limmig | -.0031183 .0274636 -0.11 0.910 -.0569459 .0507094 lgdp | .420183 .0851208 4.94 0.000 .2533494 .5870166 lgdpau | -.4190583 .4910948 -0.85 0.393 -1.381586 .5434698 lgdpdfrati~w | .1988839 .2306985 0.86 0.389 -.2532769 .6510447 lpopau | 1.49543 1.691885 0.88 0.377 -1.820604 4.811463 lpop | -.1610926 .1262926 -1.28 0.202 -.4086216 .0864365 lxrate1 | -.0346209 .0231868 -1.49 0.135 -.0800662 .0108245 lremote | .0638175 .1763873 0.36 0.717 -.2818953 .4095303 ldist | -3.846984 .5236704 -7.35 0.000 -4.87336 -2.820609 lopen | -.0029923 .04968 -0.06 0.952 -.1003633 .0943787 english | -.0473416 .2930698 -0.16 0.872 -.6217477 .5270646 white | 16.73522 2.624619 6.38 0.000 11.59106 21.87937 lwhitemg | -1.218746 .281282 -4.33 0.000 -1.770049 -.6674437 _cons | 16.69449 17.04596 0.98 0.327 -16.71497 50.10396 ------</p><p>. vce</p><p>| limmig lgdp lgdpau lgdpdf~w lpopau lpop lxrate1 lremote ldist ------+------limmig | .000754 lgdp | -.000892 .007246 lgdpau | .000232 -.002241 .241174 lgdpdfrati~w | -.001342 .003015 -.009794 .053222 lpopau | -.001434 .001663 -.802952 .053746 2.86247 lpop | .0001 -.006908 -.000589 -.000747 -.003179 .01595 lxrate1 | -.000047 .00014 .001282 .001037 -.006294 -.000337 .000538 lremote | -.000025 .001847 -.018229 -.003176 .052045 -.000577 .000077 .031112 ldist | .002853 .001951 -.012231 -.002009 -.010347 .020871 -.000161 .016152 .274231 lopen | .000062 -.000218 -.002071 .001422 .002023 .000845 -.000018 -6.7e-06 .000852 english | -.001501 .001076 .001618 .002777 -.003887 .004359 .000614 -.000019 .056073 white | .004512 -.040539 .038897 -.016146 -.265882 .072702 .002649 .006914 .166938 lwhitemg | -.000525 .001808 -.004814 .000906 .032259 -.005519 -.000046 .002233 -.020672 _cons | .007071 -.054513 7.32983 -.696156 -26.7985 -.220225 .070572 -.840824 -2.66777</p><p>| lopen english white lwhitemg _cons ------+------lopen | .002468 english | .000119 .08589 white | -.000184 .105374 6.88862 lwhitemg | .00009 -.010681 -.727705 .07912 _cons | .003889 -.61734 1.46806 -.182918 290.565 closed on: 25 Jul 2006, 20:22:56</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    79 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us