General Instructions s6

General Instructions s6

<p>Fall 10 EEE-161 10-20-10 Midterm General instructions: . 10/20/10 Wednesday, 6:00 to 7:15 pm, RVR-1006 . Open book/note . Use engineering units . 5 problems – 20 points each . No computer (laptop, palmtop, …) . Show your work. Just an answer, even if it is the right one, is not good enough. . You need to include units in your answer. </p><p>1) A short-circuited 75-ohm transmission line (r = 1) is used to replicate the effect of a 5 pF capacitor at 3 GHz. Determine the shortest possible length of this line. </p><p>2) A 50- ideal transmission line (r = 4) carrying a 1.5 GHz signal is terminated with </p><p>ZL = 50  – j35 . a) Find the reflection coefficient  (in polar form) and VSWR. b) Find the input impedance Zin (in rectangular form) 6 cm away from ZL. 3) Determine the Electric field (in rectangular coordinates) @ (4,-5,6) due to a point charges: Q = 5 nC @ (1,2,-3). 4) Determine the Electric field (in rectangular coordinates) @ (0,2,3) due to the following point charges: Q1 = 10 pC @ (0,0,0), Q2 = -5 pC @ (0,1,0), and Q3 = 15 pC @ (0,1,-1). 5) Determine the Electric field (in cylindrical coordinates) at point P if the line charge </p><p> carries a uniform density l = 20 pC/m and d = 2 m. z d d</p><p>6) A point charge of 100 pC is at the center of a thin spherical shell with radius = 3 m 2 and surface charge density s = -5 pC/m . Determine the E-field at r = 2 m and 4 m.</p><p>7) An infinitely long cylinder with radius = 2 cm and volume charge density v = 6 3 2 C/m is surrounded by a concentric thin cylindrical shell with s = 0.02 C/m and radius = 4 cm. Determine the E-field at r = 1 cm, 3 cm, and 5 cm. 8) Determine the potential if a test charge is moved from (0,5,1) to (0,2,3) and given that the electric field components are: -2z Ex = 0, Ey = 0, and Ez = 2 e . 2,3,5,6,8 Fall 10 EEE-161 10-20-10 Midterm</p><p> c 8 m 1) f  3GHz   1 v  v  3  10 Z  75 r s 0 r 1 0 C  5 pF X  X  10.61 10  C 2 f C C</p><p> v 360deg 3 deg     0.1m     3.6  10 f  m</p><p>1   1   3 l    atan  l  47.763 10 m    2. f C Z0 </p><p> c 8 m 2) f  1.5GHz   4 v  v  1.5  10 Z  50 Z  50  j35 r s 0 L r ZL  Z0     0.109  0.312i   0.33 arg()  70.71 deg ZL  Z0</p><p>1   VSWR  VSWR  1.987 1  </p><p> v 360deg 3 deg     0.1 m     3.6  10 L  6cm  L  216 deg f  m</p><p>ZLcos L  jZ0sin L Zin  Z0 Zin  27.248  12.243i Z0cos L  jZLsin L</p><p>3) Q1  5nC</p><p>Q1x  1m QPx  4m</p><p>Q1y  2m QPy  5m</p><p>Q1z  3m QPz  6m</p><p>2 2 2 R1x  QPx  Q1x R1y  QPy  Q1y R1z  QPz  Q1z R1  R1x  R1y  R1z R1  11.79m</p><p> R   R   R  Q1  1x  V Q1  1y  V Q1  1z  V E1x  E1x  0.082 E1y  E1y  0.192 E1z  E1z  0.247 4   3  m 4   3  m 4   3  m 0  R1  0  R1  0  R1  Fall 10 EEE-161 10-20-10 Midterm</p><p>4) Q1  10 pC Q2  5 pC Q3  15 pC</p><p>Q1x  0m Q2x  0m Q3x  0m QPx  0m</p><p>Q1y  0m Q2y  1m Q3y  1m QPy  2m</p><p>Q1z  0m Q2z  0m Q3z  1m QPz  3m</p><p>2 2 2 R1x  QPx  Q1x R1y  QPy  Q1y R1z  QPz  Q1z R1  R1x  R1y  R1z R1  3.606 m</p><p>2 2 2 R2x  QPx  Q2x R2y  QPy  Q2y R2z  QPz  Q2z R2  R2x  R2y  R2z R2  3.162 m</p><p>2 2 2 R3x  QPx  Q3x R3y  QPy  Q3y R3z  QPz  Q3z R3  R3x  R3y  R3z R3  4.123 m</p><p> R   R   R  Q1  1x  V Q1  1y   3 V Q1  1z   3 V E1x  E1x  0 E1y  E1y  3.835  10 E1z  E1z  5.753  10 4   3  m 4   3  m 4   3  m 0  R1  0  R1  0  R1   R   R   R  Q2  2x  V Q2  2y   3 V Q2  2z   3 V E2x  E2x  0 E2y  E2y  1.421  10 E2z  E2z  4.263  10 4   3  m 4   3  m 4   3  m 0  R2  0  R2  0  R2   R   R   R  Q3  3x  V Q3  3y   3 V Q3  3z   3 V E3x  E3x  0 E3y  E3y  1.923  10 E3z  E3z  7.694  10 4   3  m 4   3  m 4   3  m 0  R3  0  R3  0  R3  V E  E  E  E E  0 x 1x 2x 3x x m</p><p> 3 V E  E  E  E E  4.337  10 y 1y 2y 3y y m</p><p> 3 V E  E  E  E E  9.183  10 z 1z 2z 3z z m</p><p> pC 5) z  2m z  4m   20 a  0m 1 2 l m</p><p>V l  1 1  V Er  0 Ez     Ez  0.045 m 4 0  2 2 2 2  m  a  z2 a  z1 </p><p>100pC  3 V 6) r  2m E  E  224.694 10 r 2 r m 4 0r pC 2 5 4 (3m) 2 100pC m  3 V r  4m E   E  261.48 10 r 2 2 r m 4 0r 4 0r Fall 10 EEE-161 10-20-10 Midterm</p><p>C 2 7) r  1cm   6 Q   r L S 2 rL v 3 v m 2 v  r 3 V Er  Er  3.388 10 2 0 r m</p><p>C 2 r  3cm   6 Q   (2cm) L S 2 rL v 3 v m 2 v  (2cm) 3 V Er  Er  4.518 10 2 0 r m</p><p>C 2 r  5cm   6 Q1   (2cm) L S 2 rL v 3 v m 2 v  (2cm) 3 V Er1  Er1  2.711 10 2 0 r m</p><p>C s2 4cm 3 V   0.02 E  E  1.807 10 s 2 r2 r2 m m 2 0 r</p><p> 2z 8) Ez( z)  2e P1 (1 5 1) P2 (3 2 3)</p><p>3    E ( z) d z  0.133  E ( z) d z  exp (2z)  z  z   1</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us