<p>Supplementary information</p><p>The steady state equations used to solve the network shown in the Fig. 1</p><p>Total molar balances</p><p>FLO11t = FLO11 + FLO11_Flo8p_Ste12pTec1p + FLO11_Flo8p + FLO11_Ste12pTec1p +</p><p>Sfl1_FLO11</p><p>Flo8t = Flo8 + Flo8p + FLO11_Flo8p + Flo8p_E2 + Flo8_Tpk2 + FLO11_Ste12pTec1p_Flo8p</p><p>Sfl1t = Sfl1 + Sfl1p + Sfl1_FLO11 + Sfl1p_E4 + Sfl1_Tpk2</p><p>E2t = E2 + Flo8p_E2</p><p>E4t = E4 + Sfl1p_E4</p><p>E6t = E6 + Ste12pTec1p_E6</p><p>Adct = Adc + Adc_Ras2GTP + Adc_Gpa2GTP</p><p>Ste12Tec1_t = Ste12Tec1 + Ste12pTec1p + Ste12pTec1_Kss1p + Ste12Tec1_Tpk1 + </p><p>Ste12Tec1_Tpk2+ Ste12Tec1_Tpk3 + Ste12pTec1p_E6 </p><p>+FLO11_Flo8p_Ste12pTec1p + FLO11_Ste12pTec1p </p><p>Pde1t = Pde1 + Pde1p_cAMP + Pde1p + Pde1p_E8 + Pde1_tpk1+ Pde1_tpk3</p><p>Pde2t = Pde2(1+cAMP/Km14)</p><p>R2C2t = R2C2 + R2(cAMP)4 </p><p>R2C2t represents total PKA complex of Tpk1, Tpk2, Tpk3 with Bcy1(R)</p><p>Ct = 2 R2C2 + C + Pde1_tpk1 + Pde1_tpk3 ( where C = tpk1 + tpk2+ tpk3) cAMPt = cAMP + R2(cAMP)4 + Pde1p_cAMP + Pde2_cAMP</p><p>Equilibrium Relations</p><p>[FLO11_ Flo8p] [FLO11_ Ste12 pTec1p] Kd1 Kd 2 [Flo8p][FLO11] [Ste12 pTec1p][FLO11] [FLO11_ Ste12pTec1p _ Flo8p] [FLO11_ Sfl1] Kd3 Kd4 [Flo8p][Ste12 pTec1p][FLO11] [Sfl1][FLO11]</p><p>[Adc _ Gpa2GTP] [Adc _ Ras2GTP] Kd5 Kd6 [Gpa2GTP][Adc] [Ras2GTP][Adc]</p><p>4 [cAMP] [R2C2 ] Kd7 2 [R2 (cAMP)4 ][C]</p><p>Rate expression with pseudo-steady state representation of complexes for</p><p> modification-demodification cycles</p><p>Flo8 activation by Tpk2</p><p> k1 k 2 [Flo 8][ Tpk 2]= [ Flo 8 p ][ E 2] Km1 Km 2</p><p>Inhibitor inactivation by Tpk2</p><p> k3 k4 [Sfl1][Tpk2] [Sfl1p][E4] Km3 Km4</p><p>Ste12Tec1 activation by Tpk1/2/3 and Kss1p</p><p>Tpk1 Tpk2 Tpk3 Kss1p E6 k5[Ste12Tec1] k6 [Ste12 pTec1p] Km5 Km6 Km7 Km8 Km9 Pde1 activation by Tpk1 and Tpk2</p><p> Tpk1 Tpk3 E8 k7 [Pde1] k8[Pde1p] Km10 Km11 Km12</p><p> cAMP rate balance</p><p> k10 k11 k9 [Adc _ a] [Pde1p][cAMP] [Pde2][cAMP] Km13 Km14 Activation of Kss1p through MAPK pathway ( Ras2GTP)</p><p> nH Kss1max Ras2GTP Kss1p nH nH K 0.5 Ras2GTP The steady equations including the effect of Tpk1 and Tpk3 on Flo8 and Sfl1</p><p>Molar Balance</p><p>Flo8t = Flo8 + Flo8p + FLO11_Flo8p + Flo8p_E2 + Flo8_Tpk1 +Flo8_Tpk2 + Flo8_Tpk3+ </p><p>FLO11_Ste12pTec1p_Flo8p</p><p>Sfl1t = Sfl1 + Sfl1p + Sfl1_FLO11 + Sfl1p_E4 + Sfl1_Tpk1+Sfl1_Tpk2 + Sfl1_Tpk3</p><p>Flo8 activation by Tpk1, Tpk2, Tpk3</p><p>Tpk1p k12 Tpk2 p k1 Tpk3p k13 E2 [Flo8] k2[Flo8p] Km15 Km1 Km16 Km2 Inhibitor inactivation by Tpk1, Tpk2 Tpk3</p><p>Tpk1p k14 Tpk2 k3 Tpk3 k15 E4 [Sfl1] k4 [Sfl1p] Km17 Km3 Km18 Km4</p><p>Component Concentrations</p><p>FLO11t = 0.1 nM (Malkey et al. 2003), Ste12Tec1_t = 200nM (Kofhal et al. 2004),</p><p>Flo8t = 150nM (Neelajan et al. 2007), Sfl1t = 150nM (Neelajan et al. 2007), Adct =</p><p>40nM (Bhalla et al. 2002), R = 1000nM (Bhalla et al. 2002), C = 1000nM (Bhalla et al.</p><p>2002), cAMPt = 7000nM (Bhalla et al. 2002), Pde1t =100 (Neelajan et al. 2007), Pde2t =</p><p>50 (Neelajan et al. 2007), Kss1max = 100 (Neelajan et al. 2007).</p><p>All the phosphatases concentrations are in the range as reported by Huang et al.</p><p>1996. They are further chosen on basis of two criteria: first the activation should not be restricted below 90% and second the cascades are saturated so that the phosphatase concentration is roughly 1/10 of the kinase concentration (Koshland et al. 1982).</p><p>E2t= 10 nM, E4t = 10 nM, E6t = 10 nM, E8t =10nM</p><p>Dissociation constants </p><p>Kd1 = Kd2 =10nM (assumed), Kd3 =100nM2 (assumed), Kd4 =10nM (assumed), Kd5 =</p><p>2 nM (Bhalla et al. 2002), Kd6 =10 nM (Shima et al. 1997), Kd7 = 2.634x106 nM2(Bhalla et al. 2002).</p><p>Rate constants (min-1) k1 = 150, k2 =150, k3 = 150, k4 = 150, k5 = 150, k6 =150, k7 =150, k8 = 150 (Huang et al 1996), k9 = 1040, k10 =1200, k11 = 600 (Balla et al. 2002) k12/Km15 = 0.05, k13/Km16 = 0.05 – Activation of Flo8p by Tpk1/3 k14/Km17 = 1x10-3, k15/Km18 = 1x10-3 – Inhibitor inactivation by Tpk1/3</p><p>Michaelis Menton constants (Huang et al. 1996)</p><p>Km1 = 100nM, Km2 =100nM, Km3 = 100nM, Km4 = 100nM, Km8 =100nM, Km9 = </p><p>100nM, Km10 = 100nM, Km11 = 100nM, Km12 =100nM, Km13=100nM, </p><p>Km14=100nM, Km5 =Km6 = Km7 = 100-1000nM</p><p>Supplementary references</p><p>Bhalla US. (2002) Use of Kinetikit and GENESIS for modeling signaling pathways. Methods Enzymol 345: 3–23.</p><p>Huang CYF and Ferrell Jr JE. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93: 10078-10083. Malkhey V, Bhat PJ and Venkatesh KV. (2003) Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic Shuttling of Gal80p results in a highly sensitive response to galactose. J Biol Chem 278: 48764–48769.</p><p>Kofahl B and Klipp E. (2004) Modelling the dynamics of the yeast pheromone Pathway. Yeast 21: 831–850.</p><p>Shima F, Yuriko YK , Yanagihara C, Tamada M ,Tomoyo O, Kariya K and Kataoka T. (1997) Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein. Mol Cell Biol 17:1057–1064.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages5 Page
-
File Size-