Total Molar Balances

Total Molar Balances

<p>Supplementary information</p><p>The steady state equations used to solve the network shown in the Fig. 1</p><p>Total molar balances</p><p>FLO11t = FLO11 + FLO11_Flo8p_Ste12pTec1p + FLO11_Flo8p + FLO11_Ste12pTec1p +</p><p>Sfl1_FLO11</p><p>Flo8t = Flo8 + Flo8p + FLO11_Flo8p + Flo8p_E2 + Flo8_Tpk2 + FLO11_Ste12pTec1p_Flo8p</p><p>Sfl1t = Sfl1 + Sfl1p + Sfl1_FLO11 + Sfl1p_E4 + Sfl1_Tpk2</p><p>E2t = E2 + Flo8p_E2</p><p>E4t = E4 + Sfl1p_E4</p><p>E6t = E6 + Ste12pTec1p_E6</p><p>Adct = Adc + Adc_Ras2GTP + Adc_Gpa2GTP</p><p>Ste12Tec1_t = Ste12Tec1 + Ste12pTec1p + Ste12pTec1_Kss1p + Ste12Tec1_Tpk1 + </p><p>Ste12Tec1_Tpk2+ Ste12Tec1_Tpk3 + Ste12pTec1p_E6 </p><p>+FLO11_Flo8p_Ste12pTec1p + FLO11_Ste12pTec1p </p><p>Pde1t = Pde1 + Pde1p_cAMP + Pde1p + Pde1p_E8 + Pde1_tpk1+ Pde1_tpk3</p><p>Pde2t = Pde2(1+cAMP/Km14)</p><p>R2C2t = R2C2 + R2(cAMP)4 </p><p>R2C2t represents total PKA complex of Tpk1, Tpk2, Tpk3 with Bcy1(R)</p><p>Ct = 2 R2C2 + C + Pde1_tpk1 + Pde1_tpk3 ( where C = tpk1 + tpk2+ tpk3) cAMPt = cAMP + R2(cAMP)4 + Pde1p_cAMP + Pde2_cAMP</p><p>Equilibrium Relations</p><p>[FLO11_ Flo8p] [FLO11_ Ste12 pTec1p] Kd1  Kd 2  [Flo8p][FLO11] [Ste12 pTec1p][FLO11] [FLO11_ Ste12pTec1p _ Flo8p] [FLO11_ Sfl1] Kd3  Kd4  [Flo8p][Ste12 pTec1p][FLO11] [Sfl1][FLO11]</p><p>[Adc _ Gpa2GTP] [Adc _ Ras2GTP] Kd5  Kd6  [Gpa2GTP][Adc] [Ras2GTP][Adc]</p><p>4 [cAMP] [R2C2 ] Kd7  2 [R2 (cAMP)4 ][C]</p><p>Rate expression with pseudo-steady state representation of complexes for</p><p> modification-demodification cycles</p><p>Flo8 activation by Tpk2</p><p> k1 k 2 [Flo 8][ Tpk 2]= [ Flo 8 p ][ E 2] Km1 Km 2</p><p>Inhibitor inactivation by Tpk2</p><p> k3 k4 [Sfl1][Tpk2]  [Sfl1p][E4] Km3 Km4</p><p>Ste12Tec1 activation by Tpk1/2/3 and Kss1p</p><p>Tpk1 Tpk2 Tpk3 Kss1p  E6 k5[Ste12Tec1]     k6 [Ste12 pTec1p]  Km5 Km6 Km7 Km8  Km9 Pde1 activation by Tpk1 and Tpk2</p><p> Tpk1 Tpk3  E8 k7 [Pde1]   k8[Pde1p]  Km10 Km11 Km12</p><p> cAMP rate balance</p><p> k10 k11 k9 [Adc _ a]  [Pde1p][cAMP]  [Pde2][cAMP] Km13 Km14 Activation of Kss1p through MAPK pathway ( Ras2GTP)</p><p> nH Kss1max Ras2GTP Kss1p  nH nH K 0.5  Ras2GTP The steady equations including the effect of Tpk1 and Tpk3 on Flo8 and Sfl1</p><p>Molar Balance</p><p>Flo8t = Flo8 + Flo8p + FLO11_Flo8p + Flo8p_E2 + Flo8_Tpk1 +Flo8_Tpk2 + Flo8_Tpk3+ </p><p>FLO11_Ste12pTec1p_Flo8p</p><p>Sfl1t = Sfl1 + Sfl1p + Sfl1_FLO11 + Sfl1p_E4 + Sfl1_Tpk1+Sfl1_Tpk2 + Sfl1_Tpk3</p><p>Flo8 activation by Tpk1, Tpk2, Tpk3</p><p>Tpk1p  k12 Tpk2 p  k1 Tpk3p  k13 E2 [Flo8]    k2[Flo8p]  Km15 Km1 Km16  Km2 Inhibitor inactivation by Tpk1, Tpk2 Tpk3</p><p>Tpk1p  k14 Tpk2  k3 Tpk3 k15 E4 [Sfl1]    k4 [Sfl1p]  Km17 Km3 Km18  Km4</p><p>Component Concentrations</p><p>FLO11t = 0.1 nM (Malkey et al. 2003), Ste12Tec1_t = 200nM (Kofhal et al. 2004),</p><p>Flo8t = 150nM (Neelajan et al. 2007), Sfl1t = 150nM (Neelajan et al. 2007), Adct =</p><p>40nM (Bhalla et al. 2002), R = 1000nM (Bhalla et al. 2002), C = 1000nM (Bhalla et al.</p><p>2002), cAMPt = 7000nM (Bhalla et al. 2002), Pde1t =100 (Neelajan et al. 2007), Pde2t =</p><p>50 (Neelajan et al. 2007), Kss1max = 100 (Neelajan et al. 2007).</p><p>All the phosphatases concentrations are in the range as reported by Huang et al.</p><p>1996. They are further chosen on basis of two criteria: first the activation should not be restricted below 90% and second the cascades are saturated so that the phosphatase concentration is roughly 1/10 of the kinase concentration (Koshland et al. 1982).</p><p>E2t= 10 nM, E4t = 10 nM, E6t = 10 nM, E8t =10nM</p><p>Dissociation constants </p><p>Kd1 = Kd2 =10nM (assumed), Kd3 =100nM2 (assumed), Kd4 =10nM (assumed), Kd5 =</p><p>2 nM (Bhalla et al. 2002), Kd6 =10 nM (Shima et al. 1997), Kd7 = 2.634x106 nM2(Bhalla et al. 2002).</p><p>Rate constants (min-1) k1 = 150, k2 =150, k3 = 150, k4 = 150, k5 = 150, k6 =150, k7 =150, k8 = 150 (Huang et al 1996), k9 = 1040, k10 =1200, k11 = 600 (Balla et al. 2002) k12/Km15 = 0.05, k13/Km16 = 0.05 – Activation of Flo8p by Tpk1/3 k14/Km17 = 1x10-3, k15/Km18 = 1x10-3 – Inhibitor inactivation by Tpk1/3</p><p>Michaelis Menton constants (Huang et al. 1996)</p><p>Km1 = 100nM, Km2 =100nM, Km3 = 100nM, Km4 = 100nM, Km8 =100nM, Km9 = </p><p>100nM, Km10 = 100nM, Km11 = 100nM, Km12 =100nM, Km13=100nM, </p><p>Km14=100nM, Km5 =Km6 = Km7 = 100-1000nM</p><p>Supplementary references</p><p>Bhalla US. (2002) Use of Kinetikit and GENESIS for modeling signaling pathways. Methods Enzymol 345: 3–23.</p><p>Huang CYF and Ferrell Jr JE. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93: 10078-10083. Malkhey V, Bhat PJ and Venkatesh KV. (2003) Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic Shuttling of Gal80p results in a highly sensitive response to galactose. J Biol Chem 278: 48764–48769.</p><p>Kofahl B and Klipp E. (2004) Modelling the dynamics of the yeast pheromone Pathway. Yeast 21: 831–850.</p><p>Shima F, Yuriko YK , Yanagihara C, Tamada M ,Tomoyo O, Kariya K and Kataoka T. (1997) Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein. Mol Cell Biol 17:1057–1064.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us