<p>Integrated Algebra</p><p>NOTES: Simplifying radicals with variables Name</p><p>The same rules apply for simplifying radicals when variables are a part of the expression.</p><p>You need to remember what the relationship is between a variable and its square root. b 2 = b b and b2 = b</p><p>EX: c2 = c x2 = x m2 = m</p><p>When you try to simplify a radical term with variables, separate the variables in groups of two.</p><p>EX: a2b2 = a2 b2 EX: 4x2 = 4 x2</p><p> a b = ab 2 x = 2x</p><p>Sometimes the groups are uneven, and there is a variable left under the radical sign.</p><p>EX: 16y = 16 y</p><p>4 y = 4 y</p><p>EX: 5a 4 = 5 a 2 a 2</p><p>5 a a = a 2 5</p><p>EX: 24y 3 = 4 6 y 2 y</p><p>2 6 y y = 2y 6y Integrated Algebra</p><p>TRY: a) 49x3 b) 40ab 2</p><p> c) x 2 y 4 d) 25a</p><p> e) 6x 3 f) 10a 5</p><p> g) 8m4 n3 h) 100x8 Integrated Algebra</p><p>HOMEWORK: Simplifying radicals with variables Name</p><p>Simplify each radical.</p><p>1. 18y 3 z 2. 100a 2b 4c</p><p>3. 75m3n5 4. 36xy 2 </p><p>5. 12a 2 6. 50x 5 y 3</p><p>7. a 2 8. 16x 2 y</p><p>9. 50m3 n 4 p 10. 27ab3c 6</p><p>11. 9a 2bc 4 12. 144c 3</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages3 Page
-
File Size-