<p>AME 3363 Information Sheet</p><p>Ideal Gases pv = RT, pV = mRT, Rair = 0.287 kJ/kgK k = cp/cv, cp = cv + R Steady-Flow Processes</p><p>�m˙i m ˙ e (Conservation of Mass) V2 V2 Q˙ - W˙ =� m˙ (h +e - gz ) � + m ˙ (hi gz ) (Conservation of Energy) CV CV e e2 e i i 2 i Work p V- p V w= 2 pdv = 2 2 1 1 (polytropic processes, n ≠ 1) 1 1- n</p><p>骣V2 骣 V 2 =p2 V 2 ln琪 = p 1 V 1 ln 琪 (polytropic processes, n = 1) 桫V1 桫 V 1 n(p V- p V ) w= - 2 v dp = 2 2 1 1 (polytropic processes, n ≠ 1) 1 n- 1</p><p>骣p1 骣 p 1 =p2 V 2 ln琪 = p 1 V 1 ln 琪 (polytropic processes, n = 1) 桫p2 桫 p 2</p><p>Entropy Changes</p><p>骣T2 骣 v 2 骣T2 骣 p 2 s2- s 1 = c v ln琪 + Rln 琪 s2- s 1 = c p ln琪 - Rln 琪 (constant specific heats) 桫T1 桫 v 1 桫T1 桫 p 1 p 2 dT骣 v2 2 s- s = c + Rln琪 s s s( T ) s( T ) R ln (variable specific heats) 2 11 v T v 2 1 2 1 p 桫 1 1 </p><p>Isentropic Processes k- 1 k- 1 T骣 pk 骣 v 2=琪 2 = 琪 1 (constant specific heats) T1桫 p 1 桫 v 2 p骣 p v骣 v 2= 琪 r2 , 2= 琪 r2 (variable specific heats) p1桫 p r1 v1桫 v r1</p><p>Isentropic Efficiency</p><p> wa h 1- h 2a ht = = (Turbines) ws h 1- h 2s</p><p> ws h 2s- h 1 hp = = (Compressors, pumps) wa h 2a- h 1</p><p>W n e t Mean Effective Pressure M E P V m a x V m i n </p><p>Ideal Otto Cycle V 1 V 4 1-2 isentropic compression Compression ratio r V V 2-3 constant-volume heat addition 2 3 3-4 isentropic expansion 4-1 constant-volume heat rejection</p><p>Ideal Diesel Cycle V 3 Cut-off ratio r c 1-2 isentropic compression V 2 2-3 constant-pressure heat addition 3-4 isentropic expansion 4-1 constant-volume heat rejection</p><p>Ideal Brayton Cycle 1-2 isentropic compression p 2 p 3 Pressure ratio r p 2-3 constant-pressure heat addition p 1 p 4 3-4 isentropic expansion 4-1 constant-pressure heat rejection</p><p>Ideal Brayton Cycle with Regeneration q ε r e g e n , a c t q r e g e n , m a x</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages2 Page
-
File Size-