Optimizing Cadmium and Mercury Specificity of Cadr-Based E.Coli Biosensors by Redesign of Cadr

Optimizing Cadmium and Mercury Specificity of Cadr-Based E.Coli Biosensors by Redesign of Cadr

<p> 1 Supplementary Data</p><p>2 Optimizing cadmium and mercury specificity of </p><p>3 CadR-based E.coli biosensors by redesign of </p><p>4 CadR</p><p>5 HU-CHUN TAO*, ZHI-WEN PENG, PENG-SONG LI, TAI-AN YU, JIE SU</p><p>6 Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of </p><p>7 Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, </p><p>8 518055, China</p><p>9 * Corresponding author: Tel.:+86-755-26032007; e-mail: [email protected];</p><p>10 Hu-Chun Tao*, e-mail: [email protected];</p><p>11 Zhi-Wen Peng, e-mail: [email protected];</p><p>12 Peng-Song Li, e-mail: [email protected];</p><p>13 Tai-An Yu, e-mail: [email protected];</p><p>14 Jie Su, e-mail: [email protected];</p><p>1 15 Supplementary Table 1 Bacterial strains and vectors used</p><p>Strain or plasmid Description Reference/source Strain E. coli TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 Invitrogen, Carlsbad, ΔlacX74 recA1 araΔ139 Δ(ara-leu)7697 galU galK Calif. rpsL (StrR) endA1 nupG COG E. coli TOP10 transformed with pNTCOG, Kam This study COG-TC10 E. coli TOP10 transformed with pNTCOG-TC10, Kam This study COG-TC21 E. coli TOP10 transformed with pNTCOG-TC21, Kam This study Vector pMD18-TR pMD18-T vector (Takara, Shiga, Japan) containing cadR synthesized by Sangon gene (AF333961) Biotech, Shanghai, China pPROBE-NT a broad-host-range promoter-probe vector; containing gfp (Miller, Leveau et al. gene; 6.807kb; Kam; AF286453 2000) pNTCOG pPROBE-NT containing cadR gene; 7.29kb; Kam This study pNTCOG-TC10 pPROBE-NT containing cadR-TC10 gene; 7.257kb; Kam This study pNTCOG-TC21 pPROBE-NT containing cadR-TC21 gene; 7.224kb; Kam This study 16</p><p>17</p><p>2 18</p><p>19 Supplementary Table 2 Primer pairs used</p><p>Name Sequence (5’ to 3’) Description CadR-R CCCAAGCTTTTAATGCCCGTGGCTTCGCCCTACAT Amplification for cadR CadR-F CCGGAATTCGGGGTCATCCTTAATTTGAGCCTGTTGCC Amplification for cadR, cadR-TC10 and cadR-TC21 TC10-R CCCAAGCTTCTCGGTTTCCGGCACCGATAC Amplification for cadR- TC10 TC21-R CCCAAGCTTCTCCAGTTGCTGC Amplification for cadR- TC21 20</p><p>21</p><p>3 22</p><p>23</p><p>24</p><p>25 Supplementary Fig. 1 Growth curve of COG.</p><p>26</p><p>27</p><p>4 28 Supplementary Fig. 2 A model of CadR-TC21. The 3D structure modeling of CadR-TC21 was </p><p>29 constructed based on the crystal structure of CueR (Changela, Chen et al. 2003) using SWISS-MODEL </p><p>30 Workspace (Guex and Peitsch 1997; Schwede, Kopp et al. 2003; Arnold, Bordoli et al. 2006), QMEAN4 </p><p>31 score estimated model reliability was 0.702. The predicted structure and alignment scheme were used to </p><p>32 design a mutagenesis strategy and analyze the functionality changing of mutant proteins.</p><p>33</p><p>5 34 Supplementary Fig. 3 Alignment (Lee 2001) of CadR of P. putida 06909 with MerR of P. aeruginosa, </p><p>35 Cadr-TC10 and CadR-TC21. Identical bases are shown on a yellow background. Asterisks are Hg(II)-</p><p>36 binding cysteine residues of MerR, and numbers 1 to 7 are the heptad repeats that form dimerization helix</p><p>37 structures to promote homodimer formation. Histidine-rich in the C-terminal extension of CadR is white </p><p>38 characters on a green background. Helix-turn-helix motif for DNA binding is in N-terminal, and metal-</p><p>39 binding domain in C-termimal. </p><p>40</p><p>6 41 Supplementary Table 3 Equations </p><p>Strains Metals Equations R2 COG Zn 0.9944 Cd 0.9175 Hg 0.9994 COG-TC10 Zn 0.9578 Cd 0.9365 Hg 0.9958 COG-TC21 Zn 0.9031 Cd 0.9024 Hg 0.9876 42</p><p>43</p><p>7 44 References</p><p>45 Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for </p><p>46 protein structure homology modelling. Bioinformatics 22(2): 195-201. doi: 10.1093/bioinformatics/bti770</p><p>47 Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragón A (2003) Molecular Basis of Metal-</p><p>48 Ion Selectivity and Zeptomolar Sensitivity by CueR. Science 301(5638): 1383-1387. doi: 10.1126/science.1085950</p><p>49 Guex N, Peitsch MC (1997) SWISS‐ MODEL and the Swiss ‐ Pdb Viewer: An environment for comparative protein 50 modeling. Electrophoresis 18(15): 2714-2723. doi: 10.1002/elps.1150181505</p><p>51 Lee SW, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida </p><p>52 consisting of a cadmium transporting ATPase and a MerR family response regulator. Appl Environ Microb 67(4): </p><p>53 1437-1444. doi: 10.1128/aem.00863-07</p><p>54 Miller WG, Leveau JHJ, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol </p><p>55 Plant Microbe In 13(11): 1243-1250. doi: 10.1094/mpmi.2000.13.11.1243</p><p>56 Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. </p><p>57 Nucleic Acids Res 31(13): 3381-3385. doi: 10.1093/nar/gkg520</p><p>58</p><p>59</p><p>8</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us