El Paso Manufacturing Co

El Paso Manufacturing Co

<p>El Paso Manufacturing Co. (EPMC)</p><p>Let: z  number of assemblies to make</p><p> x1  number of frames to manufacture x2  number of shafts to manufacture</p><p>Objective: Maximize z</p><p>LP: Max z [number of assemblies] s.t. z  x1 [frame required for each assembly] z  x2 [shaft required for each assembly] </p><p>0.8x1  0.5x2  48000 [forging machine hours]</p><p>0.1x1  7200 [drilling machine hours]</p><p>0.3x1  14400 [milling machine hours]</p><p>0.5x1  0.3x2  24000 [grinding machine hours] </p><p>0.2x2  12000 [lathe machine hours] z, x1, x2  0 [nonnegativity] bubba - EPMC PROBLEM DATA IN EQUATION STYLE Maximize 1 Z Subject to FRAME REQD 1 Z - 1 X1 <= 0 SHAFT REQD 1 Z - 1 X2 <= 0 FORGING 0.8 Z + 0.5 X1 <= 48000 DRILLING 0.1 Z <= 7200 MILLING 0.3 Z <= 14400 GRINDING 0.5 Z + 0.3 X1 <= 24000 LATHE 0.2 Z <= 12000 0 <= Z 0 <= X1 0 <= X2 bubba - EPMC OPTIMAL SOLUTION - DETAILED REPORT Variable Value Cost Red. cost Status</p><p>1 Z 30000.0000 1.0000 0.0000 Basic 2 X1 30000.0000 0.0000 0.0000 Basic 3 X2 30000.0000 0.0000 0.0000 Basic</p><p>Slack Variables 4 FRAME REQD 0.0000 0.0000 -0.3750 Lower bound 5 SHAFT REQD 0.0000 0.0000 0.0000 Lower bound 6 FORGING 9000.0000 0.0000 0.0000 Basic 7 DRILLING 4200.0000 0.0000 0.0000 Basic 8 MILLING 5400.0000 0.0000 0.0000 Basic 9 GRINDING 0.0000 0.0000 -1.2500 Lower bound 10 LATHE 6000.0000 0.0000 0.0000 Basic</p><p>Objective Function Value = 30000 bubba - EPMC OPTIMAL SOLUTION - DETAILED REPORT Constraint Type RHS Slack Shadow price</p><p>1 FRAME REQD <= 0.0000 0.0000 0.3750 2 SHAFT REQD <= 0.0000 0.0000 0.0000 3 FORGING <= 48000.0000 9000.0000 0.0000 4 DRILLING <= 7200.0000 4200.0000 0.0000 5 MILLING <= 14400.0000 5400.0000 0.0000 6 GRINDING <= 24000.0000 0.0000 1.2500 7 LATHE <= 12000.0000 6000.0000 0.0000</p><p>Objective Function Value = 30000</p><p>Grinding Machine constraint is tight (slack = 0; shadow price = 1.25). EPMC should first consider increasing the number of grinding machines. Alternative Formulation</p><p>Let: x  number of frames to manufacture 1 x2  number of shafts to manufacture</p><p>Objective: Maximize x1 (or x2 )</p><p>LP:</p><p>Max x1 [number of assemblies ( number of frames)] s.t. x1  x2 [1 frame & 1 shaft required for each assembly]</p><p>0.8x1  0.5x2  48000 [forging machine hours]</p><p>0.1x1  7200 [drilling machine hours]</p><p>0.3x1  14400 [milling machine hours]</p><p>0.5x1  0.3x2  24000 [grinding machine hours] </p><p>0.2x2  12000 [lathe machine hours] x1, x2  0 [nonnegativity] bubba - EPMC PROBLEM DATA IN EQUATION STYLE Maximize 1 X1 Subject to FR EQ SHFT 1 X1 - 1 X2 = 0 FORGING 0.8 X1 + 0.5 X2 <= 48000 DRILLING 0.1 X1 <= 7200 MILLING 0.3 X1 <= 14400 GRINDING 0.5 X1 + 0.3 X2 <= 24000 LATHE 0.2 X2 <= 12000 0 <= X1 0 <= X2 bubba - EPMC OPTIMAL SOLUTION - DETAILED REPORT Variable Value Cost Red. cost Status</p><p>1 X1 30000.0000 1.0000 0.0000 Basic 2 X2 30000.0000 0.0000 0.0000 Basic</p><p>Slack Variables 4 FORGING 9000.0000 0.0000 0.0000 Basic 5 DRILLING 4200.0000 0.0000 0.0000 Basic 6 MILLING 5400.0000 0.0000 0.0000 Basic 7 GRINDING 0.0000 0.0000 -1.2500 Lower bound 8 LATHE 6000.0000 0.0000 0.0000 Basic</p><p>Objective Function Value = 30000 bubba - EPMC OPTIMAL SOLUTION - DETAILED REPORT Constraint Type RHS Slack Shadow price</p><p>1 FR EQ SHFT = 0.0000 0.0000 0.3750 2 FORGING <= 48000.0000 9000.0000 0.0000 3 DRILLING <= 7200.0000 4200.0000 0.0000 4 MILLING <= 14400.0000 5400.0000 0.0000 5 GRINDING <= 24000.0000 0.0000 1.2500 6 LATHE <= 12000.0000 6000.0000 0.0000</p><p>Objective Function Value = 30000</p><p>Grinding Machine constraint is tight (slack = 0; shadow price = 1.25). EPMC should first consider increasing the number of grinding machines.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us