(1) Use Logarithmic Properties to Expand the Expression

(1) Use Logarithmic Properties to Expand the Expression

<p>Practice, Test #4, M140 </p><p>(1) Use logarithmic properties to expand the expression: </p><p>骣x2 y ln 琪 (a) 琪 3 桫 z</p><p>(2) Use logarithmic properties to write as a single logarithm: </p><p>1 ln(x- 1) + ln( x2 + 1) - 3ln( x + 2) 3</p><p>(3) Find the derivative of the ln function: </p><p>(a) f( x )= x2 ln( x )</p><p>(b) g( x )= ln( x2 + x )</p><p>(4) Evaluate the integral: </p><p>3x2 (a) dx x3 + 5</p><p> sec2 x (b) dx tan x</p><p> dx (c) 3x - 1</p><p>(d) e2x dx</p><p>2 (e) xex dx</p><p>(5) Solve the exponential equation for k: </p><p>6= 12e2460k</p><p>(6) Solve the logarithmic equation for x: ln(2x - 3) = 2. (7) Find the derivative of the function: </p><p>2 (a) f( x ) = ex-2 x</p><p>(b) g( x ) = x2 ex</p><p>(c) f(x) = x2ln(x)</p><p>(c) f(x) = ln(x2)</p><p>(8) Evaluate the integral: </p><p>3 (a) 3x2 ex dx</p><p>(b) e2x dx</p><p>(c) cos(x ) esin x dx</p><p>Solutions: </p><p>(1) The ln properties are: </p><p>(i) ln(xy) = ln(x) + ln(y) (ii) ln(x/y) = ln(x) - ln(y). (iii) r ln x = ln xr </p><p>骣x2 y 1 1 1 ln琪 = ln(x2 y2 ) - ln( z 3 ) = ln( x 2 ) + ln( y 2 ) - ln( z 3 ) = 2ln( x ) + ln( y ) - 3ln( z ). 琪 3 桫 z 2</p><p>1 1 ln(x- 1) + ln( x2 + 1) - 3ln( x + 2) = ln( x - 1)3 + ln( x 2 + 1) - ln( x + 2) 3 = 3 (2) 3 x-1( x2 + 1) ln (x + 2)3</p><p>(3) you have to use the product rule here - and you need to know the rules for differentiating ln functions: d1 d f ( x ) ln(x )= , ln( f ( x )) = . dx x dx f( x ) f( x )= x2 ln( x ), 1 (a) f( x )= 2 x ln( x ) + x2 = x 2x ln( x )+ x .</p><p> g( x )= ln( x2 + x ), (b) 2x + 1 g( x ) = x2 + x</p><p>Note what happened here - the derivative of the interior function is on top, and the interior function is on the bottom. </p><p>(4) </p><p>3x2 du dx= =ln | u | + C = ln | x3 + 5 | + C . 蝌x3 + 5 u (a) u= x3 +5, ( bigger - deg reed ) du= 3 x2 dx ,</p><p>(b) </p><p> sec2 x du dx= =ln | u | + C = ln | tan( x ) | + C . 蝌tan x u u= tan x du= sec2 x dx ,</p><p>(c) dx1 du 1 1 = =ln(u ) + C = ln | 3 x - 1| + C 蝌3x- 1 3 u 3 3 u=(3 x - 1) dx , 1 du= 3 dx ,( rig it : dx :* ) 3 1 du= dx 3 (d) e2x dx u = 2x, du = 2 dx (rig it: dx, ¸ by 2), 1 du= dx Now, substitute in : 2 1 1 e2x dx = eu du= e u + C = (re-sub) 2 2 1 e2x + C. 2 2 (e) xex dx (two polynomials, so: u = x2 (bigger-degreed) du = 2x dx (rig it: need x dx: ¸ 2) 1 du= xdx 2</p><p>(5) 6= 12e2460k (Isolate the e part: divide by 12) </p><p>6 = e2460k , (ln both sides: ) 12</p><p>骣1 2460k ln琪 = lne , 桫2 骣1 ln琪 = 2460k , 桫2 骣1 ln 琪 桫2 = k 2460</p><p>(6) ln(2x - 3) = 2. (take e to both sides) eln(2x- 3)= e 2 , 2x- 3 = e2 , e2 + 3 x = 2</p><p>(7) You need to know the derivative rules for the (natural) exponential function. They are: d d ex= e x, e f( x ) = f ( x ) e f ( x ) dx dx</p><p>2 f( x )= ex-2 x ,</p><p>(a) 2 f( x )= (2 x - 2) ex-2 x</p><p>(b) Here we need to use the product rule: g( x )= x2 ex , g( x )= 2 xex + x2 e x .</p><p>(a) Here, we have to use the product rule in conjunction with the the rules for differentiating the logarithmic function ln : d/dx( ln x) = 1/x d/dx( ln (f(x))) = f '(x)/f(x).</p><p>(c) f(x) = x2ln(x) g h </p><p> f '(x) = 2x ln(x) + x2(1/x) g' h + g h' = 2x ln(x) + x. </p><p>(d) f(x) = ln(x2) f '(x) = 2x/x2, f '(x) = 2/x. </p><p>(8) The integral rules for the exponential function: </p><p>蝌ex dx= e x + C, e u du = e u + C .</p><p>The last one is used for u-substitution: </p><p>3 3 蝌3x2 ex dx= e u du = e u + C = e x + C (a) u= x3 , ( bigger - deg reed ), du= 3 x2 dx</p><p>(b) </p><p>1 1 e2x dx= e u du = e 2 x + C. 蝌 2 2 u= 2 x , 1 du= 2 dx ,( rig it : dx :* ), 2 1 du= dx, 2</p><p>(c) The goal of u-substitution is to pice one part of the integral to be u, and another part to be it's derivative du, here: 蝌cos(x ) esinx dx= e u du = e u + C = e sin( x ) + C u= sin( x ), du= cos( x ) dx</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us