A Gene Expression Experiment Practical

A Gene Expression Experiment Practical

<p>A Gene Expression Experiment – Practical</p><p>November 2008</p><p>Richard Mott</p><p>1. Repeat the analysis of the liver data set in the lecture (the commands are repeated here but you should refer to the lecture notes as well)</p><p>(i) Load the data (NOTE these are binary files)</p><p>> load("liver.exp.RData") </p><p>> load("liver.cov.RData")</p><p>(ii) threshold the data</p><p>>liver.median <- apply(liver.exp, 2, median )</p><p>> hist(liver.median, breaks=50) </p><p>>liver.subset <- liver.exp[,liver.median>6]</p><p>(If your computer has enough RAM, try using a bigger data set by decreasing the threshold 6 to eg 5)</p><p>(iv) Look for sex effects</p><p>> tfunc <- function( X, GENDER ) { tt <- t.test( X ~ GENDER ); return(tt$p.value) }</p><p>> sex.pvalue <- apply(liver.subset, 2,tfunc, liver.cov$GENDER )</p><p>> hist( sex.pvalue, breaks=50)</p><p>> sum(sex.pvalue<1.0e-5)</p><p>(v) Heritability</p><p>> anova.pvalue <- function( X, factor ) { a <- anova(lm( X ~ factor)); return(a[1,5])}</p><p>>family.pvalue <- apply( liver.subset, 2, anova.pvalue, liver.cov$Family )</p><p>Extra exercise – report the % variance explained instead of the p-value</p><p>(vi) Weight</p><p>> weight.pvalue <- apply( liver.subset, 2, anova.pvalue, liver.cov$EndNormalBW ) > hist(weight.pvalue,breaks=50)</p><p>(vii) GO analysis</p><p>>go1 <- read.delim("GO.Ensembl.01.txt")</p><p>>go1$transcript <- paste(“LIVER.express.”, make.names(go1$Transcript),sep=””)</p><p>>go2name <- read.delim(“GO2name.txt”, sep=”\t”)</p><p>>intersect <- colnames(liver.subset)[match(go1$transcript, colnames(liver.subset), nomatch = 0)]</p><p>> intersect <- unique(sort(intersect)) </p><p>> liver.subset.intersect <- liver.subset[, match(intersect, colnames(liver.subset))]</p><p>> go.intersect <- go1[match(intersect,go1$transcript),]</p><p>> sex.ids <- colnames(liver.subset)[sex.pvalue<0.01]</p><p>> sex.intersect <- sex.ids[match(sex.ids,intersect,nomatch=0)]</p><p>> sex.idx <- go.intersect$transcript %in% sex.ids</p><p>> fisher.func <- function( X, sex.idx) { X <- as.factor(X) ; if ( nlevels(X) == 2 ) {f <- fisher.test(X, sex.idx); return (f$p.value)} else return(1) }</p><p>> fish <- apply( go.intersect[,4:ncol(go.intersect)], 2, fisher.func, sex.idx ) </p><p>> fish[fish < 0.01]</p><p>> data.frame( pvalue=fish[fish<0.01], desc=as.character(go2name$desc[go2name$go %in% names(fish[fish<0.01])]))</p><p>2. Now repeat the analysis on the lung data set</p><p>3. Investigate these data sets using your own initiative. For example, are there differences between expression for different chromosomes? (you will need the file mouse.transcripts.genes.txt, use read.delim())</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us