Stat-Geometric Distributions

Stat-Geometric Distributions

<p> Understanding The Geometric Distribution Page 1 of 2</p><p>1. Assume a setting in which:</p><p>• Each trial results in either success or failure, • Each trial has the same probability of success, and • Each trial is independent. </p><p>For example, say we have identical bags of M&Ms in which each bag has exactly the same proportion of browns, 20%. We pull one M&M from the first bag. If it is brown we say we have a success. If it is not brown we try the second bag and so on until we finally pull a brown M&M. </p><p>Fill in the chart below for the situation described above: </p><p>First Outcomes success (S=Success, on F=Failure) Probability of first success on bag # Bag # 1 S P(1) = 2 P(2) = 3 FFS P(3) = 4 P(4) = k P(k) =</p><p>Check your answer with your teacher.</p><p>2. a. By hand, make a very rough plot of the distribution you created in part 1. Your plot should give some idea of what the complete distribution will look like. Label each axis carefully.</p><p> b. Question: Could you ever plot the entire distribution?</p><p>3. This setting is called a Geometric Distribution. The NSpire can calculate geometric probabilities. Confirm each of your answers in your chart in step 1. Hint: P(X=4) can be found by geomPdf (0.2,4) . Each value from P(X=1) through P(X=4) can be found by geomPdf (0.2,{1,2,3,4}).</p><p>≥ Understanding The Geometric Distribution Page 2 of 2</p><p>4. Use your calculator to create a histogram of the first 20 elements of this Geometric Distribution. Note: The Nspire command seq(x,x,1,20,1) generates the integers 1, 2, ..., 20. This will save you from typing each number. Make a rough copy of that plot below.</p><p>5. For the problem above, what is the probability that the first brown M&M is pulled out sometime before the 23rd bag? Hint: Easy to do on the calculator. Write the command and answer below:</p><p>6. How are the binomial and the geometric settings different?</p><p>7. Challenges. </p><p> a. Without using your calculator, roughly draw a geometric distribution on your plot in step 4 which would show the likelihood of probability of pulling a brown M&M from each bag contained 70% brown M&Ms.</p><p> b. Check your answer by scatter plotting both distributions (20% brown and 70% brown) on the same screen.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us