Kalkulusi Sabumenismetyvelo Mevnierebebisatvis Leqcia 9

Kalkulusi Sabumenismetyvelo Mevnierebebisatvis Leqcia 9

<p>kalkulusi sabumenismetyvelo mevnierebebisaTvis 10.05.2018</p><p> leqcia 9 5. warmoebuli, antiwarmoebuli 5.1. funqciis warmoebuli da diferenciali, mxebi, normali, moZraobis siCqare, antiwarmoebuli, katebi da simZimis Zala</p><p> gansazRvra 5.1.1. nebismieri wiris mimarT wrfes, romelic am wirs gadakveTs, mkveTi ewodeba. gansazRvra 5.1.2. Tu mkveTis wirTan TanakveTis ori mezobeli wertilidan erT-erTs mivaswrafebT meorisken, ma- y Sin zRvrul mdgomareobaSi miRebul wrfes am ukanasknel wertilSi wirisadmi mxebi ewodeba. rogorc ukve viciT, wrfis gantolebas aqvs y  mx  b , m  const , b  const m saxe, sadac m-s wrfis daxra, xolo b-s y RerZze } kvali ewodeba (ix. nax. 5.1.1). es funqcia uwyvetia. }b nax. 5.1.2-ze agebuli wiri warmoadgens- uw O 1 x yveti y  f (x) funqciis magaliTs, romlis grafik- sac yvela wertilSi calsaxad gansazRvruli</p><p> mxebi aqvs, garda  x0 , f x0  wertilisa, nax. 5.1.1 y sadac mas ori mxebi aqvs.</p><p> gansazRvra 5.1.3. laibnicis*) ganmartebis Tanaxmad, y  f (x) fun-</p><p> qciis warmoebuli x0 wertilSi ewodeba funqciis x , f(x ) x , f x ( 0 0 ) grafikis  0  0  wertilSi misdami gavlebuli y  mx  b mxebis m daxras . (5.1.1) x f 'x0   m O 0 x (5.1.1) Semdegnairad ikiTxeba: `ef Strix iqs nuli~. aseTi Cawera lagranJs ekuTvnis. y nax. 5.1.2 TviT laibnicma ki warmoebuli ase Cawera: () dy df x  y -y  0  m . } 1 0 dx dx nax. 5.1.3-ze y  f (x) wirisadmi x ,y =f(x ) ( 0 0 0 ) mxebi gavlebulia x0 , y0  wertilSi. b } x-x 0 *) x x g. v. laibniciO (16460 _1716) _1 germanelix filosofosi-idealisti, maTematikosi, fizi- kosi da gamomgonebeli, iuristi, istorikosi, enaTmecnieri. 1 nax. 5.1.3 kalkulusi sabumenismetyvelo mevnierebebisaTvis leqcia 9</p><p> radgan mxebi, rogorc wrfe, x0 , y0  da (x1 , y1 ) wertilebze gadis, maT unda daak- mayofilon wrfis gantoleba, e. i.</p><p> y0  mx0  b ,</p><p> y1  mx1  b . Tu meores gamovaklebT pirvels, miviRebT</p><p> y1  y0  mx1  x0  , saidanac wrfis m daxrisTvis miviRebT y  y m  1 0 . x1  x0 rac, (5.1.1)-is Tanaxmad, mogvcems</p><p> y1  y0  f 'x0  . x1  x0 amrigad, x1 , y1  wertilis nebismierobis gamo miviRebT x0 , y0  wer tilSi y  f (x) wirisadmi gavlebuli mxebis</p><p> y  f x0   f 'x0 x  x0  gantolebas.</p><p> mxebisadmi marTobul wrfes x0 , y0  wertilSi y  f (x) wirisadmi gavlebuli normali ewodeba. mis gantolebas eqneba 1 y  f x0    x  x0  f 'x0  saxe, ramdenadac urTierTmarTobi wrfeebis daxrebis namravli (-1)-is toli unda iyos, marTlac Cven SemTxvevaSi daxrebis namravli 1  f '(x0 )  1 . f '(x0 ) Tu funqciis grafiks raime wertilSi ar aqvs calsaxad gansazRvruli mxebi, maSin funqcias argumentis Sesabamisi mniSvnelobisTvis warmoebuli ar aqvs. wrfis y  mx  b (5.1.2) gantolebaSi x-is koeficienti (5.1.2) funqciis warmoebulis tolia, rac uSualod gansazRvra 5.1.3-dan ga- momdinareobs, radgan wrfis yovel wertilSi mxebi TviT am wrfes emTxveva. vTqvaT, raime sagani Tanabrad da sworxazovnad moZraobs da erTi wertilidan meore wertilamde s manZili t droSi gaiara. ganvlili manZilis drosTan Sefardebas siCqare ewodeba: s v  . t Tu moZraoba araTanabaria, maSin gavlili manZilis amisTvis saWiro drosTan Sefardeba gvaZlevs miaxloebiT (saSualo) siCqares: st   st  v  2 1 . (5.1.3) t2  t1 rac ufro mcirea moZraobis dro, miT ufro zusti iqneba siCqaris mniSvneloba. zRvari ki, roca t2  t1 , bunebrivia, t1 momentSi `myisieri~ siCqaris mniSvnelobad miviRoT.</p><p> gansazRvra 5.1.4. Tu mocemuli gvaqvs y  f (x) funqcia, misi warmoebuli x0 wertilSi ganimarteba</p><p>2 kalkulusi sabumenismetyvelo mevnierebebisaTvis leqcia 9</p><p> dyx0  df x0  f (x)  f x0  y0   f 'x0   lim  lim dx dx xx0 x  x0 x0 0 x0 f (x  x )  f (x ) y  lim 0 0 0  lim 0 (5.1.4) x0 0 x0 x0 0 x0 tolobiT, sadac</p><p>y0 : f (x)  f x0  funqciis nazrdia, xolo x0 : x  x0 argumentis nazrdi. dy  df (x)  f '(x)dx sidides y  f (x) funqciis diferenciali ewodeba.</p><p>Tu y  f '(x) -s ganvixilavT, rogorc funqcias, misTvisac SeiZleba ganvsazRvroT warmoebuli, romelsac meore rigis warmoebuli ewodeba: d 2 f (x)  f '(x)' f "(x)  . dx 2 analogiurad ganimarteba me-3, me-4 da a. S. ufro maRali rigis warmoebulebi. rogorc gansazRvra 5.1.3-dan, aseve gansazRvra 5.1.4-dan gamomdinareobs, rom orive y  mx , y  mx  b funqciis warmoebuli m-is tolia. amave ganmartebebidan uSualod gamomdinareobs, rom y  b funqciis warmoebuli 0-is tolia, e. i. mudmivis warmoebuli 0-ia. wrfivi funqciis warmoebuli x-is koeficientia. kerZod, Tu f (x)  x , maSin x  x  x x f '(x)  lim  lim  lim 1  1. x0 x x0 x x0 Tu f (x)  x 2 , maSin 2 x  x  x 2 x 2  2xx  (x) 2  x 2 x 2 ' lim  lim x0 x x0 x 2xx (x) 2  lim  lim  lim 2x  lim x  2x  0  2x . x0 x x0 x x0 x0 katebi da simZimis Zala. kata evoluciis procesSi Camoyalibda, rogorc erT- erTi saukeTeso ZuZumwovari mtacebeli. magaliTisTvis, zogan Sinaurma katebma mgalobeli Citebis 60%-ic ki gaanadgures. Sinauri kata im kataTagan warmoiSva, romlebic xeebze nadirobasTan iyvnen adaptirebulni, rac udides moxerxebulobasa da siswrafes moiTxovs. aRniSnul katebs Zalian moqnili xerxemali aqvT, rac maT msxverplze daxtomisas warmoqmnili dartymis amortizirebis saSualebas aZlevs. amdagvari moqnilobis gamo katas aqvs vardnis procesSi swrafad gadatrialebisa da miwaze yovelTvis fexebiT daxtomis unari. vardnis procesSi tanis swrafad gasworebis katebis am unars adamianebi yovelTvis aRtacebaSi mohyavda. katis vardnisadmi miZRvnili samecniero naSromebis raodenoba mcirea. niu-iorkis binebidan katebis vardnis</p><p>3 kalkulusi sabumenismetyvelo mevnierebebisaTvis leqcia 9 gamokvlevam uCvena, rom maRali sarTulebidan gadmovardnili katebi ukeT ecemodnen miwaze, vidre Sua sarTulebidan gadmovardnilebi. rogorc Cans, gadmovardnisas kata tans swrafadve asworebs, Tumca misi sxeuli daZabuli rCeba, maSin, rodesac didi simaRlidan gadmovardnisas vardnis mdgomareobaSi myofi kata dundeba da fexebiT iRebs paraSutis formas, rac mciredad anelebs siswrafes da Sedegad dacemac ufro msubuqia. saSualo simaRleebidan gadmo- vardnisas kata ZiriTadad aRwevs saboloo siCqares (mizidulobis Zalisa da haeris winaaRmdegobis balansis gamo), magram sxeulis daZabuloba da naklebi elastikuroba fataluri an mZime dazianebebis albaTobas zrdis. vardnisas haeris winaaRmdegobis modelirebis sirTuleebis analizi cdeba kursis miznebs, magram Cven SegviZlia movaxdinoT vardnisas sim Zimis ZaliT gamowveuli aC qarebiT miRebuli pirveladi dinamikis mo delireba. Tu kata xidan vardeba, moZraoba xasiaTdeba simZimis Zalis ZiriTadi kanoniT. niutonis*) meore kanonis Tanaxmad, masisa da aCqarebis namravli obieqtze moqmedi yvela Zalis jamis tolia. rogorc ukve aR- vniSneT, siCqare ganvlili manZilis warmoebulia droiT. SevniSnoT, rom aCqareba (siCqaris cvli- lebis siCqare) siCqaris warmoebulia droiT. vTqvaT, kata gadmovarda 16 futis (erTi futi udris 30,48sm) simaRlis totidan. vardnisas Tu ra simaRlezea kata, ganisazRvreba s(t)  16  16t 2 formuliT. cxadia, sawyis t  0 momentSi simaRle s(0)  16  16 02  16. ismis kiTxva: ra xnis ganmavlobaSi vardeba kata da ris tolia misi siCqare miwaze danarcxebisas? pirvel kiTxvaze pasuxi advili gasacemia, radgan dacemisas kata nulis tol simaRlezea miwidan, e. i. Cven unda amovxsnaT Semdegi 0  s(t)  16  16t 2 gantoleba, saidanac 16  16t 2  0 , 16t 2  16 , t 2  1, t  1 wm, radgan dro dadebiTi sididea. amdenad, dacemisas siCqaris gamosaTvlelad unda vipovoT vardnis manZilis warmoebuli, roca t  1: v(t)  s'(t)  (16)'162t  0  32t  32t da  ft    v(1)  32  .  wm vTqvaT, f (x) da g(x) funqciebs x wertilSi aqvs warmoebulebi da  raime mud- mivia, maSin  f (x)  g(x)'  f '(x)  g'(x) ; ( f (x) g(x))' f '(x) g(x)  f (x) g'(x) ;  f (x)'  ' f (x)  f '(x)    0  f '(x)  f '(x) , radgan   const , xolo mudmivis warmoebuli nulis tolia; '  f  f ' g  fg'    , roca g(x)  0 ,  g  g 2 </p><p>*) i. niutoni (1643-1727) _ ingliseli fizikosi da maTematikosi. 4 kalkulusi sabumenismetyvelo mevnierebebisaTvis leqcia 9</p><p> df 1 (y) 1  , f '(x)  0 . dy f '(x) garda amisa, x n ' n  x n1 ; (5.1.5) 1 (ln x)' ; (5.1.6) x e x ' e x . (5.1.7) '  ln x   1  1 1 1 log a x'        ln x'   . (5.1.8)  ln a   ln a  ln a x x ln a</p><p> vTqvaT, mocemulia z  f (y) , y  g(x) funqciebi, amasTan pirvelis gansazRvris are emTxveva meoris mniSvnelobaTa ares, maSin z  ( f (g(x)))  ( f ° g)(x) -s rTuli funqcia ewodeba. misi warmoebuli gamoiTvleba Semdegi .  f g(x)' f ' g'(x) y formuliT. gawarmoebis am wess jaWvis wesi ewodeba. cxadia, x . a x  eln a  e x lna B(x,y) axla, Tu gamoviyenebT jaWvis wess, gveqneba R a x ' e x ln a '  e x ln a  ln a  a x  lna . (5.1.9) a ganvixiloT erTeulovani wre (ix. nax. 5.1.4). Tu radius- O A x veqtors, romelic x RerZs emTxveva, davabrunebT centris garSemo saaTis isris sawinaaRmdego mimarTulebiT, vidre is Tavis sawyis mdgomareobas ar daubrundeba, miviRebT kuTxes, romelsac sruli kuTxe ewodeba. sruli kuTxe iyofa 360 gradusad (360° ). 180° -ian kuTxes gaS- nax. 5.1.4 lili kuTxe ewodeba, xolo 90° -ian kuTxes _ marTi. centraluri kuTxe izomeba radianebSic. erTi radianis toli kuTxe ewodeba kuTxes, romlis Sesabamisi rkali sigrZiT radiusis tolia. ramdenadac srul kuTxes mTeli wrewiris sigrZe, e. i. 2R (erTeulovani wrewiris SemTxvevaSi _ 2 ) Seesabameba, amitom sruli kuTxe 2 radianis tolia. gansazRvra 5.1.5.  kuTxis sinusi (sin) ewodeba (ix. nax. 5.1.4) mopirdapire kaTetis Se- fardebas hipotenuzasTan*), xolo kosinusi (cos) _ mimdebare kaTetis Sefardebas hipotenuzasTan (erTeulovani wris SemTxvevaSi _ Sesabamisad AB da OA monakveTebis sigrZes ganzomilebis</p><p>*) B(x, y) wertils  kuTxis ( namdvili ricxvis, Tu  radianebSia gamosaxuli) Sesabamisi wertili ewodeba ricxviT wrewirze (ix. nax. 5.1.4). aqedan gamomdinare nebismieri  kuTxis (namdvili ricxvis) sinusi ewodeba am wertilis y ordinatis y Sefardebas ricxviTi wrewiris R radiusTan: sin  . analogiurad ganimarteba R 5 kalkulusi sabumenismetyvelo mevnierebebisaTvis leqcia 9 gareSe). tangensi (tg) ganimarteba, rogorc mopirdapire kaTetis Sefardeba mimdebare kaTetTan, xolo kotangensi (ctg) _ piriqiT. amdenad, sin cos tg  , ctg  . cos sin samarTliania Semdegi formulebi:       sin  sin   2 sin cos , 2 2       cos  cos  2sin sin . 2 2 gamovTvaloT trigonometriuli funqciebis warmoebulebi. warmoebulis ganmartebis Tanaxmad, x  x  2sin cos x   d sin x sinx  x sin x 2 2 (sin x)' : lim  lim   dx x0 x x0 x x sin 2  x   lim lim cos x    1 cos x  cos x . (5.1.10) x0 x x0  2  2 analogiurad, (cos x)'  sin x . (5.1.11) Sefardebis warmoebulis formulis gamoyenebiT advilad davamtkicebT, rom 1 1 (tgx)'  , (ctgx)'  . (5.1.12) cos2 x sin 2 x gansazRvra 5.1.6. R1 -ze gansazRvrul f (x) funqcias ewodeba perioduli funqcia l  0 periodiT, Tu nebismieri x-sTvis marTebulia f (x  l)  f (x) toloba. cxadia, Tu l y  f (x) funqciis periodia, maSin am funqciis periodi iqneba 2l, 3l,  , kl, k  N . davamtkicoT 2l-sTvis f (x  2l)  f (x  l)  l  f (x  l)  f (x) . Tu l y  f (x) funqciis periodia, maSin (l) -ic aris am funqciis periodi. marTlac, f (x)  f (x  l)  l  f (x  l) . e. i. miviReT, rom f x  (l)  f (x) , rac imas niSnavs, rom (l) funqciis periodia. funqciis gamokvlevis dros mniSvnelovania am funqciis minimaluri dadebiTi periodis moZebna. SevniSnoT, rom sin-isa da cos-is minimaluri periodia 2 , tg-isa da ctg-is ki _  . nax. 5.1.5-dan da (5.1.4)-dan cxadia, rom</p><p> x y nebismieri  namdvili ricxvis sxva trigonometriuli funqciebic: cos  , tg  , R x x ctg  . y 6 kalkulusi sabumenismetyvelo mevnierebebisaTvis leqcia 9</p><p> f (x)  f x0  f 'x0   lim  lim tg  tg . xx xx 0 x  x0 0</p><p> amrigad, y  f (x) funqciis x0 wertilSi f 'x0  warmoebuli funqciis grafikisadmi</p><p>x0 , f x0  wertilSi gavlebuli mxebis mier x RerZTan Sedgenili  kuTxis tangensis tolia. nax. 5.1.5-dan aseve naTelia, rom y  y tg  1 0  m , x  x0 rac imas niSnavs, rom warmoebulis 5.1.3 da 5.1.4 gansazRvrebebi ekvivalen- turia. gansazRvra 5.1.7. F(x) funqcias ewodeba f (x) funqciis antiwarmoebuli (primitiu- li, pirvelyofili, ganusazRvreli integrali), Tu F'(x)  f (x) . (5.1.13) radgan mudmivis warmoebuli nulis tolia, amitom F(x) -sTan erTad F(x)  const - y ic iqneba f (x) funqciis antiwarmoebuli. amrigad, antiwarmoebuli mudmivi Sesakrebis sizustiT y1 ganisazRvreba. f (x) gansazRvra 5.1.8.   y  f (x) gansazRvruli integrali SeiZleba y0  f x0  ganvmartoT Semdegi tolobiT: b f (x)dx  F(x) b : F(b)  F(a) ,  a a  (5.1.14) sadac a-s da b-s integrebis x0 x (saintegracio) sazRvrebi, x-s sainte- nax. x gracio cvladi, xolo f (x) funqcias 5.1.5 integralqveSa gamosaxuleba ewo- deba (ikiTxeba Semdegnai- rad: integrali a-dan da b-mde ef iqs de iqsi udris ef didi iqs Casma a-dan da b-mde). gansazRvra 5.1.9. (5.1.14) formulas niuton-laibnicis formula ewodeba. is gamoxatavs y  f (x) wiriTa da x  a , x  b da y  0 wrfeebiT SemosazRvruli sasruli figuris farTobs. (5.1.13) SeiZleba asec CavweroT F(x)   f (x)dx  const . leqcia 10-Si integralis cnebas sxva kuTxiT kidev erTxel davubrundebiT. (5.1.5) _ (5.1.12) gawarmoebis formulebidan advilad gamomdinareobs antiwarmoebulebis Semdegi cxrili:</p><p>7 kalkulusi sabumenismetyvelo mevnierebebisaTvis leqcia 9</p><p> x n1 dx x n dx   const, (n  1) ,  ln x  const ,  n 1  x a x e x dx  e x  const , a x dx   const,   ln a  sin xdx  cos x  const ,  cos xdx  sin x  const , dx dx  tg x  const ,  ctg x  const .  cos 2 x  sin 2 x</p><p>8</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us