ES8 Exercises for Web Posting - Solutions

ES8 Exercises for Web Posting - Solutions

<p>ES9 Additional Exercises - Answers Chapter 1</p><p>1. a. inferential b. descriptive</p><p>2. a. judgment sample b. No, not a probability sample.</p><p>3. a. All Alzheimer patients in the U.S. b. Cost in medical expenses and lost productivity per patient per year. c. Total cost per year for all Alzheimer patients in the U.S. d. Total cost per year for the Alzheimer patients used as a sample.</p><p>4. qualitative</p><p>5. a. Attribute data b. Judgment sample, most likely. Chapter 2</p><p>1. HOW TO SAY I LOVE YOU</p><p>100 100</p><p>80 t t 60 n n e u c</p><p>50 r o e C</p><p>40 P</p><p>20</p><p>0 0</p><p> ss g ft nd Ki ilin gi ha er Affection g- m ive ld th Hu S G Ho O Count 51 20 10 10 9 Percent 51.0 20.0 10.0 10.0 9.0 Cum % 51.0 71.0 81.0 91.0 100.0</p><p>2. a. Types of Waste in US Landfills</p><p>100 100</p><p>80 t t 60 n n e u c</p><p>50 r o e C</p><p>40 P</p><p>20</p><p>0 0</p><p> te r ic l r as d s pe st ta he w oo s Waste pa la me ot rd f gla p ya Count 38 18 14 13 11 4 2 Percent 38.0 18.0 14.0 13.0 11.0 4.0 2.0 Cum % 38.0 56.0 70.0 83.0 94.0 98.0 100.0</p><p> b. "Other" in middle is inconsistent with Pareto format. Need more information on unclassified data. 3. a. Stem-and-Leaf: 50 Common Stocks 1 1 7 9 7 6 3 3 7 2 7 1 2 4 2 6 8 6 6 2 4 2 1 8 5 7 3 0 5 1 1 7 6 5 8 2 4 1 7 5 8 3 5 8 2 2 4 2 7 2 6 5 7 2 5 5 8 9 0</p><p> b. Lowest price - $11, highest price - $90. c. More between $10 and $20 than in any other interval.</p><p>4. a. “size”; Number of Children Living at Home. “frequency”; Number of Mexican-American Women.</p><p> b.</p><p>Mexican-American Women</p><p>23 22</p><p>20 17 y c n e u</p><p> q 10 e r 7 F</p><p>1 0</p><p>0 1 2 3 4 No. Children 5. a. Third-graders at Roth Elementary School : . . : . : . . : . : : : . . . . : : : : : . : : . : . : : : : : : : : : . : +------+------+------+------+------+-ST 0.0 5.0 10.0 15.0 20.0 25.0</p><p> b.</p><p>Third Graders Physical Strength Test</p><p>10 y c n e</p><p> u 5 q e r F</p><p>0</p><p>1 4 7 10 13 16 19 22 25 PhyStren</p><p> c.</p><p>Third Graders Physical Strength Test</p><p>10 y c n e</p><p> u 5 q e r F</p><p>0</p><p>0 3 6 9 12 15 18 21 24 27 PhyStren d.</p><p>Third Graders Physical Strength Test</p><p>15 y</p><p> c 10 n e u q e r</p><p>F 5</p><p>0</p><p>-2.5 2.5 7.5 12.5 17.5 22.5 27.5 PhyStren</p><p> f. Seems to be bimodal distribution. </p><p>6. a. Class limits frequency relative frequency 2.00 - 3.00 4 0.100 3.00 - 4.00 13 0.325 4.00 - 5.00 12 0.300 5.00 - 6.00 8 0.200 6.00 - 7.00 2 0.050 7.00 - 8.00 1 0.025 40 1.000</p><p> b.</p><p>Quik Delivery Fees</p><p>30</p><p> t 20 n e c r e P 10</p><p>0</p><p>1 2 3 4 5 6 7 8 fees 7. åx = 36709 a. x = 2622 b. d(x ) = 7.5th; x = $2494 c. $2998.50 d. no mode</p><p>8. a. x = 5255/27 = 194.6 d(x ) = 14th; x = 190</p><p> b. Stem-and-leaf of SchoolYr N = 27 Leaf Unit = 1.0 1 16 0 2 17 5 11 18 000024555 (7) 19 0001225 9 20 000 6 21 166 3 22 0 2 23 3 1 24 3</p><p> c. Mean is arithmetic average, median is middle value. The two high numbers increase the mean.</p><p>9. a. midrange = 54.75 b. Highest and lowest values were the only data given. c. The distribution of state average greens’ fees must be skewed to the right.</p><p>10. a. midrange = 25,891 b. The distribution of the 50 state averages must be slightly skewed to the left since the average is slightly larger than the midrange.</p><p>11. n = 14, åx = 36,709, åx² = 103,772,173 a. 578,350.2 b. 760.5</p><p>12. a. range = 83 n = 27, åx = 5,255, åx² = 1,031,585 s = 18.4 b. 1 16 0 2 ½ 17 5 11 ½ 18 000024555 (7) ½ 19 0001225 9 ½ 20 000 6 ½ 21 166 3 ½ 22 0 2 ½ 23 3 1 ¯ 24 3</p><p> c. mounded, slightly skewed</p><p>13. n = 123, åxf = 3,387,312, åx²f = 93,827,350,800 a. $3,387,312 b. $27,539 c. Academic d. $2111</p><p>14. a. nk/100 = 10.0; d(P25) = 10.5th Q1 = 8.3 b. nk/100 = 20.0; d(P50) = 20.5th Q2 = 9.25 c. nk/100 = 30.0; d(P75) = 30.5th Q3 = 10.85 d. nk/100 = 38.0; d(P95) = 38.5th P95 = 14.8 e. 7.1, 8.3, 9.25, 10.85, 15.5 f. </p><p>Manual Dexterity Study</p><p>16 15 14 13 e</p><p> m 12 i T</p><p> k 11 s a</p><p>T 10 9 8 7 15. a. d(x ) = 18th; x = 33.0 b. 34.8</p><p> c. nk/100 = 8.75; d(P25) = 9th Q1 = 31.3</p><p> nk/100 = 26.25; d(P75) = 27th Q3 = 36.0 midquartile = 33.65</p><p> d. 30.1, 31.3, 33.0, 36.0, 39.5</p><p> e. </p><p>Ignition Times</p><p>40 39 38 37 36 e m i 35 T n</p><p> g 34 I 33 32 31 30</p><p>16. -0.86, 1.68</p><p>17. a. 9.10 to 37.18 b. » 84%</p><p>18. n = 50, x = 787.00, x2 = 21027 a. Dotplot: </p><p>One-way Commute : : :. : . : . . :::: ..: :.::. : ::.. :: . .. . +------+------+------+------+------+------Time 0 12 24 36 48 60 Histogram:</p><p>One-way Commute</p><p>15</p><p>10 y c n e u q e r</p><p>F 5</p><p>0</p><p>0 10 20 30 40 50 60 70 Time (min.)</p><p>Boxplot:</p><p>One-way Commute</p><p>0 10 20 30 40 50 60 70 Time (min.)</p><p> b. Mean: 15.74 Median: d( x~ ) = 25.5th; x~ = 13.50 Mode: 3 Midrange: 32.5 Midquartile: 5, 22; 13.5</p><p> c. s2 = 176.319, s = 13.28, Range = 63 </p><p>19. n = 20, åx = 93.6, åx² = 541.56; 4.68, 2.33; 0.02 to 9.34; 95% (19 of the 20) 20. Each student will have a different sample.</p><p>21. a.</p><p>Children Living at Home</p><p>40 38 Mex-Am erican Anglo-Am erican</p><p> n 30 e m o 23 22 W</p><p> f 20 o</p><p>17 r 15 e b m</p><p> u 10 9 9</p><p>N 7</p><p>1 1 0 0 1 2 3 4 Number of Children</p><p> b. n = åf = 70, åxf = 81, åx²f = 169; 1.2, 1.0 c. n = åf = 72, åxf = 70, åx²f = 166; 1.0, 1.2 d. Yes.</p><p>22. b. 4.6, 13.75, 22.65, 30.10, 41.1 c. 21.925, 16.35 d. 1.89, -1.52, 0.40 e. No. Chapter 3</p><p>1.</p><p>Children's Fear of Hospitals</p><p>40</p><p>35 S F M C 30</p><p>25</p><p>8 9 10 11 Age</p><p>2. a.</p><p>Walter's Payton's Rushing Records</p><p>1900</p><p>1700</p><p>1500 s</p><p> d 1300 Y l a t 1100 o T 900</p><p>700</p><p>500 200 300 400 n(carry)</p><p> b. Two separate groups of data points. c. First year and last year of his career, and probably a year when a serious injury restricted his playing time. 3. a. Scatter diagram:</p><p>Total Solar Eclipses</p><p>400</p><p>300 ) s (</p><p> n o i</p><p> t 200 a r u D 100</p><p>0</p><p>0 100 200 300 400 Width (mi)</p><p>4. åx = 96, åy = 309, åx² = 932, åxy = 2973, åy² = 9787 a. 10.4 b. 238.9 c. 6.6 d. 0.13</p><p>5. åx = 34.1, åy = 339, åx² = 123.73, åxy = 1076.9, åy² = 12,405 a. 7.449 b. 912.9 c. -79.09 d. -0.96</p><p>6. a. åx = 161, åy = 201, åx² = 4065, åxy = 4321, åy² = 6275 r = -0.707 b. If a person does not enjoy his job, he is more likely to be looking for another job. 7. a.</p><p>Cable Television Video Networks</p><p>71 s</p><p> r 66 e b i r c s b u</p><p>S 61</p><p>56</p><p>5000 15000 25000 Affiliates</p><p> b. åx = 200464, åy = 1193.0, åx² = 2689703492, åxy = 13479155, åy² = 79392 r = 0.5025; positive correlation.</p><p>8. a. åx = 52,750, åy = 639,272, åx² = 895,218,750, åxy = 8,072,375,500, åy² = 82,434,334,112</p><p> r = 0.986</p><p> b. As the enrollment increased so did the space available for recreation increase. </p><p>9. 1.1583</p><p>10. 2.75 11. a.</p><p>A Multistate Analysis of Active Life Expectancy</p><p>16 r Y n i</p><p> a 11 m e R</p><p>6</p><p>65 75 85 Age</p><p> b. åx = 740, åy = 109.9, åx² = 55090, åxy = 7947.9</p><p> y = 52.4 - 0.56x</p><p> c. Points (64,16.6) and (80,7.6) are used to locate the line. </p><p> d. approximately 13</p><p> e. No, one's age and years remaining should total a fixed value, life expectancy.</p><p>12. a.</p><p>Cash Registers</p><p>250</p><p>200 t s o C n</p><p> i 150 a M</p><p>100</p><p>0 1 2 3 4 5 6 7 8 9 Age</p><p> b. åx = 72, åy = 2163, åx² = 476, åxy = 12,677</p><p> y = 78.95 + 14.69x c. $196.47 d. The expected average cost of maintenance for all 8-year-old cash registers.</p><p>13. a.</p><p>Foreign Cars</p><p>70</p><p>60</p><p>50 y , e c i r</p><p>P 40</p><p>30</p><p>20</p><p>2 3 4 5 6 7 8 Age,x</p><p> b. n = 19, åx = 95, åy = 859, åx² = 529, åxy = 3849</p><p> y = 86.51 - 8.26x</p><p> c. Points (3,62) and (7,29) are used. d. 45.21 ($100)</p><p>14. åx = 106, åy = 332, åx² = 1438, åxy = 4446, åy² = 14,024</p><p> a. 0.518 b. y = 22.9 + 1.403x 15. a. Each person will have a different answer. b.</p><p>Balancing Work and Play</p><p>50 Work Play</p><p>40 s r u o</p><p>H 30</p><p>20</p><p>1975 1985 1995 Year</p><p> c. Yes, as work hours increase, leisure hours decrease slightly.</p><p> d.</p><p>Balancing Work and Play</p><p>24.5</p><p>23.5</p><p>22.5</p><p>21.5 e r</p><p> u 20.5 s i e</p><p>L 19.5</p><p>18.5</p><p>17.5</p><p>16.5</p><p>43 44 45 46 47 48 49 50 51 Work</p><p>The scatter diagram seems to suggest that an increase in number of work hours is related to fewer hours of leisure. 16. a. </p><p>Fast-food</p><p>60</p><p>50</p><p>40 t</p><p> a 30 F</p><p>20</p><p>10</p><p>0 100 200 300 400 500 600 700 800 900 Calories</p><p> n = 18, åx = 7055, åy = 367, åx² = 3,287,783, åxy = 164,625, åy² = 10,309</p><p> b. 0.541 c. y = 4.80 + 0.04x d. If the calories increase so does the fat content.</p><p>17. a.</p><p>Blacknose Dace Minnow</p><p>100 90 80</p><p>70 h t g</p><p> n 60 e l 50 40</p><p>30 20 10 0 1 2 3 4 age</p><p> n = 10, åx = 19, åy = 491, åx² = 49, åxy = 1196, åy² = 30,221</p><p> b. 0.937 c. y = 10.34 + 20.40x d. If the age increases so does the length. 18. a. Scatter diagram:</p><p>Scatter Diagram of 5-Year Total Return and Risk Assessment</p><p> n 40 r u t</p><p> e 30 R</p><p> l ) a t % 20 ( o T</p><p> r 10 a e Y - 0 5 0 5 10 15 20 25 Risk Assessment</p><p> b. r = .8388 c. Yes. Chapter 4</p><p>1. a. No. b. Yes. c. 26/44 d. 38/44</p><p>2. (6.29908  10 –12 )(1.53908  10 –6) = 9.69479  10 –18 Agree.</p><p>3. a. 0.5041 b. 0.0841 c. 0.357911</p><p>4. 0.054872</p><p>5. a. 0.5375 b. 0.175 c. 0.6125</p><p>6. a. 0.71429 b. 0.66667 c. 1.00000</p><p>7. a. 0.9</p><p> b. P(D|C) = 1/4 = 0.25; P( D |C) = 1 - 1/4 = 3/4;</p><p>P(C and D ) = 0.075</p><p> c. P(C and D) = 0.025</p><p>8. c. The fewest,1290 is 1290 out of 13380 or 0.0964; while the most, 1383 is 1383 out of 13380 or 0.10336. These extremes seem very close to the expected 10%. </p><p>9. 0.28 Chapter 5</p><p>1. a. how women define holiday shopping: "a pleasure", "a chore", "no big deal", or "a nightmare". b. attribute, not a numerical variable.</p><p>2. No. </p><p>3. a. 2.44, 0.73 b. Calculated mean and standard deviation are smaller than true values.</p><p>4. b. 3.0 e. Mean of squared deviation = 1.0 f. Variance is the mean of the squared deviations.</p><p>5. 0.196</p><p>6. 0.668</p><p>7. 0.889</p><p>8. 0.051</p><p>9. a. 0.463 b. 0.537</p><p>10. a. 0.006 b. 0.121 c. 0.167 d. 0.367</p><p>11. a. 0.4400 b. 0.0507 c. 0.0048 20 x 20x 12. P(x)   0.48 (0.52) ; x  0,1,...,20  x </p><p> a. 0.0313 b. P(x ³ 3) = 0.9996</p><p>5 x 5-x 13. a. P(x) =   (0.75) (0.25) for x = 0, 1, ... , 5 x</p><p> b.</p><p>P(x)</p><p>0.4</p><p>0.3</p><p>0.2 ) x ( P</p><p>0.1</p><p>0.0</p><p>0 1 2 3 4 5 x</p><p> c. 3.75, 0.97</p><p>14. Minority Group Mean, np Standard Deviation, npq Asian 1.50 1.187 Black 6.05 2.141 Hispanic 4.90 1.985</p><p>15. a. 0.070</p><p> b. One trial = one person, n = 10, success = "alone", failure = "other than alone", p = P(alone) = 0.48, q = 0.52, x = n(alone) = 0,1,...,10. 16. a. p3 + 3p2q</p><p> b. 0.028</p><p> c. 0.896</p><p> d. when p is greater than 0.5</p><p> e. 0, 0.5, or 1.0</p><p>17. a. p2 + pq</p><p> b. 0.100</p><p> c. 0.800</p><p> d. The probability that the committee makes the right decision is the same as the manager making the right decision, assuming the manager is not the one rolling the die.</p><p> e. p can be any number 0 £ p £ 1.</p><p> f. The third member makes the decision by rolling the die. Chapter 6</p><p>1. a. 0.6826 b. 0.9544 c. 0.9974 d. 0.6826 » 68%; 0.9544 » 95%; 0.9974 » 99.7%</p><p>2. a. 0.0038 = 0.38% b. 0.00003 (practically zero)</p><p>3. 0.0301</p><p>4. a. 0.1131 b. 0.0505 c. 4.64 minutes</p><p>5. a. 0.0401 = 4% b. 0.0179 = 1.8%</p><p>6. a. 0.0571 1/0.0571 is approximately 17.5 </p><p> b. 0.1401 1/0.1401 = 7.1 </p><p>7. 0.8078</p><p>8. 0.0049</p><p>9. 0.0823</p><p>10. a. 0.7053 b. 0.7064 c. 0.7155</p><p>11. a. 0.8185 = 81.85% b. 0.0228 = 2.28%</p><p>12. 0.0015 Chapter 7</p><p>1. a. approximately normal b. $31.65 c. $1.00</p><p>2. a. approximately normal. b. 62 cents c. 0.778 </p><p>3. a. 6.75 b. 0.17678 = 0.18 c. approximately normal</p><p>4. a. 0.2743 b. 0.0359 c. Yes</p><p>5. a. 0.0181 b. 0.0468 c. 0.849</p><p>6. a. 0.6390 b. With n = 250, CLT holds. c. If normal, the median is approximately equal to the mean. d. Probably not; salaries typically skewed. e. If mean is higher, probability will be less than calculated value.</p><p>7. a. 0.1335 b. 0.6214 c. 0.0559 d. n = 100 8. a & b.</p><p>Vote For A Woman President?</p><p>Yes 80 No 70 e g a</p><p> t 60 n e c</p><p> r 50 e P 40</p><p>30</p><p>20</p><p>10 1940 1950 1960 1970 1980 1990 Year</p><p> c. Yes. Percentage of yeses steadily rise, no’s steadily decrease. </p><p> d. high eighties or in the nineties</p><p> f. study the variability of a sample statistic</p><p>9. 0.9992</p><p>10. 0.0007 Chapter 8</p><p>1. a. 55.20 b. 8.546 c. 46.654 to 63.746 </p><p>2. a. $5173.97 to $6026.03 b. lower level of confidence </p><p>3. Ha: µ ¹ 10.00, z* = (9.1 - 10)/(5/) = -1.27, P = 2×(0.5000 - 0.3980) = 0.2040, Fail to reject Ho </p><p>4. a. mean gestation period b. Ha: µ  44 c. normality is assumed, n = 81 d. n = 81, x = 42.5 e. z* = (42.5 - 44)/(5/ 81 ) = -2.70 ±z(0.025) = ±1.96 f. Reject Ho</p><p>5. a. Variable N Mean Median StDev Minimum Maximum Q1 Q3 Amount 150 64.17 50.00 50.29 0.00 300.00 25.00 100.00 </p><p>Cost of Holiday Decorations</p><p>50</p><p>40 y</p><p> c 30 n e u q</p><p> e 20 r F</p><p>10</p><p>0</p><p>0 100 200 300 Amount</p><p> b. 52.96 to 75.37 c. mu not = 59.00, z* = 0.90; P = 0.37 or z  -1.96, z  1.96; fail to reject Ho d. normality can be assumed, CLT with n = 150 Chapter 9</p><p>1. a. 2.965 to 4.655 b. Does not, x most likely is not normal</p><p>2. x = 86.0, s = 11.84, 79.15 to 92.85</p><p>3. a. x = 11.49, s = 0.47 b. 11.23 to 11.75</p><p>4. x = 18.975, s = 3.312, se mean = 0.585 Ho: µ = 18% vs. Ha: µ ¹ 18% t* = 1.67, P = 0.11; t  -2.04, t  2.04 Fail to reject Ho</p><p>5. a. 0.21 b. 0.043</p><p>6. 0.37 to 0.43</p><p>7. 0.015</p><p>8. 0.085 to 0.095</p><p>9. a. n = 100: 0.0588, 0.08982, 0.098, 0.08982, 0.0588</p><p> n = 500: 0.0263, 0.0402, 0.0438, 0.0402, 0.0263</p><p> n = 1000: 0.0186, 0.0284, 0.03099, 0.0284, 0.0186</p><p> n = 1500: 0.0152, 0.0232, 0.0253, 0.0232, 0.0152</p><p> b. symmetric about 0.5</p><p>10. a. 915 b. 229 c. 1825 d. Increasing the maximum error decreases the sample size. e. Increasing the level of confidence increases the sample size.</p><p>11. 522 12. a. 0.82 b. 1005 c. 355 d. 273 e. ¼ the original size.</p><p>13. 4626</p><p>14. a. z* = -2.53 b & c. Ho: p = 0.50 (³) vs. Ha: p < 0.50 z* = -2.53, P = 0.0057, z(0.01) = -2.33 Reject Ho</p><p>15. a. 22</p><p> b.</p><p>Last Month's Earnings</p><p>5</p><p>4 y</p><p> c 3 n e u q</p><p> e 2 r F</p><p>1</p><p>0</p><p>0 100 200 300 400 500 600 700 800 x</p><p>Sample mean = $326.10 Sample standard deviation = $164.43 c.</p><p>Histogram of Earnings, with Normal Curve</p><p>6</p><p>5</p><p>4 y c n</p><p> e 3 u q e r</p><p>F 2</p><p>1</p><p>0</p><p>0 100 200 300 400 500 600 700 800 Earnings</p><p>The histogram clearly suggests that this set of data is approximately normally distributed. d. 326.1; $253.20 to $399.00</p><p> e. Ha: µ ¹ 350, t* = -0.68, 0.492 < P < 0.556, ±t(21, 0.025) = ±2.08 Fail to reject Ho</p><p>16. Ha: µ > $10, t* = 3.57, P < 0.005, t(24, 0.01) = 2.49 Reject Ho</p><p>17. Ha: µ > 21, t* = 2.52, P = 0.01, t(21, 0.05) = 1.72 Reject Ho</p><p>18. a. n = 800; trial = one person; success = not prosecute; p = P(success); x = 0, 1, 2, ... , 800 b. proportion of sample; from sample; statistic. c. 0.033 d. same when rounded </p><p>19. a. 0.027 c. 2213</p><p>20. a. Maximum error of estimate b. 1025 Chapter 10</p><p>1. a. d = -1.264, sd = 2.798; -2.414 to –0.114 b. The market had not recovered.</p><p>2. d = 26.3, sd = 24.5 Ho: µd = 0 vs. Ha: µd > 0 (improvement) t* = 3.39 P < 0.005, t  1.83 Reject Ho</p><p>3. A: x = 6.0, s² = 1.333 B: x = 4.0, s² = 2.667 0.22 to 3.78</p><p>4. a. 1.36 to 4.64 b. Sample sizes large enough </p><p>5. Ho: µ2 - µ1 = 0 vs. Ha: µ2 - µ1 > 0 (µ1 < µ2) t* = 2.84 0.008 < P < 0.012, t(9, 0.05) = 1.83 Reject Ho</p><p>6. Ho: p1 – p2 = 0 vs. Ha: p1 - p2 ¹ 0 z* = 1.75 P = 0.0802, z(0.025) = 1.96 Fail to reject Ho</p><p>7. a. Ho: pm - pw = 0 vs. Ha: pm - pw ¹ 0 z* = 1.37 P = 0.1706, z  -1.96 and z  1.96 Fail to reject Ho b. Ho: pu - pc = 0 vs. Ha: pu - pc ¹ 0 z* = 1.58 P = 0.1142, z  -1.96 and z  1.96 Fail to reject Ho</p><p>8. Ho: µd = 0 (no difference) vs. Ha: µd ¹ 0 (is different) d = 0.275, sd = 0.429 t* = 2.22 0.040 < P < 0.052, t  -1.80 and t  1.80 Reject Ho</p><p>9. Ho: µm - µf = 0 vs. Ha: µm - µf > 0 x m = 33.83, sm2 = 6.38, x f = 26.27, sf2 = 4.02 t* = 8.91 P < 0.001, t  1.81 Reject Ho Chapter 11</p><p>1. Ha: There is a difference c²* = 0.34 P = 0.9523, c²  7.82 Fail to reject Ho</p><p>2. Ha: The proportions are different per age group. c²* = 3.904 P = 0.273, c²(3,0.05) = 7.82 Fail to reject Ho </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us