<p>For each equation</p><p> Draw a picture for a scenario in which you would use the equation</p><p> List what quantity each letter represents</p><p> List units for each letter</p><p> hanging rope F=λgy</p><p>If nonconservative forces</p><p> Power</p><p>Rate of energy transfer </p><p> Center of mass</p><p> Momentum</p><p> Collisions</p><p> then </p><p>Elastic : Momentum and Energy is conserved! v1i+v1f=v2i+v2f</p><p>Inelastic: only momentum conserved!</p><p>Completely inelastic: momentum conserved but max </p><p> Impulse</p><p>Impulse increases when object bounces due to change of direction</p><p> Rotation</p><p>Tangential displacement </p><p>Tangential acceleration and angular acceleration are zero if angular velocity is constant</p><p> Constant angular acceleration equations</p><p> Moment of inertia</p><p> disk or cylinder: Rod: </p><p> Angular Momentum</p><p> then </p><p>If pinned down means linear momentum not conserved, but no net external torque means angular momentum is conserved Torque</p><p> Rotational Kinetic Energy</p><p> Rolling pure rolling: f(R)=Iα could be tension instead of friction down Incline: mgsin a=Rα slipping f=-ma </p><p> Work</p><p> Power</p><p> Static Equilibrium</p><p>Hanging signs, ladders</p><p> Gravity</p><p>Kepler 1. Elliptical orbits, sun/planet at focus (faster sun/planet at near focus, slower sun/planet at far focus)</p><p>1. Radius vector sweeps out equal areas in equal times mvr=mvr</p><p>2.</p><p> Gravitational Potential Energy</p><p> Escape velocity</p><p> Newton’s Universal Law of Gravitation</p><p>R=radius of circle r=center to center Inside planet R= Radius of Planet </p><p> Acceleration due to gravity Oscillations</p><p>Definition of simple harmonic motion </p><p> Energy</p><p> Pendulum</p><p>Electricity and Magnetism Significant Equations</p><p>Point Charges</p><p> Coulomb’s Law: Force between two charges</p><p></p><p> Force on a point charge due to Electric Field</p><p>N/C or V/m</p><p> Gauss’s Law (Graphs!) conductors vs insulators</p><p>Subtract for empty space A=2 A=4 r2</p><p> Electric Potential Energy due to an electric field</p><p> Electric Potential Energy between two point charges</p><p> Work to bring charge distribution together</p><p> Electric Potential due to an Electric Field (Constant inside conductors) : start at infinity: If constant E then </p><p> Electric potential due to a point charge</p><p>(equipotential lines=circles around a point charge, scalar...add!)</p><p> Electric potential due to many point charges</p><p> Capacitance</p><p>Farads dielectric </p><p> Energy stored in capacitors</p><p></p><p> Parallel Plate</p><p>This is true only because E=uniform between plates</p><p>Battery connected Voltage doesn’t change</p><p>Battery not connected charge on capacitor doesn’t change</p><p> Capacitors in Series</p><p></p><p> Cylindrical/spherical capacitors</p><p>(outside in) </p><p> Electric Current</p><p> Current Density</p><p> used for Ampere's Law Drift velocity</p><p> Ohm’s Law</p><p> Resistivity</p><p></p><p> Power</p><p>Watts (rate of energy) Energy =</p><p> Resistors in Parallel</p><p> Resistors in Series</p><p> Kirchhoff Rules</p><p> RC charging( graphs!!! initially capacitor acts like a wire)</p><p> i=dq/dt </p><p> RC discharging (maintain voltage) ( graphs!!! initially capacitor acts like battery)</p><p> Magnetic Force on a point charge due to a magnetic field</p><p> Magnetic force on a wire due to a magnetic field</p><p>: electric motors</p><p> Magnetic force between two wires</p><p> currents the same direction attract Velocity selector (constant velocity)</p><p> mass spectrometers</p><p> Torque on a loop due to a magnetic field</p><p> motors</p><p> Hall Effect- piece of metal/measuring voltage across, use left hand for electrons!!!</p><p> B-S Law (rings of wire)</p><p>Multiply by cos θ if ring on an axis </p><p> Solenoid (know derivation)</p><p>: n= number of turns per unit length of solenoid</p><p> Ampere’s Law</p><p> inside vs. outside wires</p><p> Torrid</p><p>: N=number of turns</p><p> Magnetic Induction</p><p>Webers CALCULUS</p><p> Faraday’s / Lenz’s Law</p><p> ds=2πr : generators</p><p></p><p> Inductance</p><p> Inductor</p><p></p><p></p><p> (inductors maintain current)</p><p> Energy Stored in an inductor</p><p> LC circuit</p><p></p><p>Gauss’ Law </p><p>Gauss’ Law for Magnetism </p><p>Faraday’s Law </p><p>Ampere’s Law with Maxwell’s displacement current </p><p> Transformer </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-