![Unit 1: Introduction to Geometry](https://data.docslib.org/img/3a60ab92a6e30910dab9bd827208bcff-1.webp)
<p>Name:______</p><p>Unit 1: Introduction To Geometry</p><p>1.1 Geometry Vocabulary</p><p>1.2 Segment Addition Postulate, and Bisector</p><p>1.3 Distance & Midpoint</p><p>1.4 Angle Measure</p><p>1.5 Angle Relationships 1.1 Geometry Vocabulary</p><p>(Leave room on the right for pictures.)</p><p>The “Undefined” Terms</p><p>1. Point </p><p>2. Line </p><p>3. Plane</p><p>Definitions</p><p>4. Collinear points</p><p>5. Coplanar points</p><p>6. Coplanar lines</p><p>7. Noncollinear points</p><p>8. Noncoplanar points 9. Noncoplanar lines</p><p>10. Segment (line segment)</p><p>11. Parallel lines</p><p>12. Parallel planes</p><p>13. Skew lines</p><p>14. Congruent</p><p>15. Congruent segments</p><p>16. Midpoint</p><p>17. Segment bisector</p><p>18. Ray</p><p>19. Angle</p><p>20. Congruent angles</p><p>21. Right angle 22. Perpendicular lines</p><p>23. Acute angle</p><p>24. Obtuse angle</p><p>25. Straight angle</p><p>26. Angle bisector</p><p>27. Vertical angles</p><p>28. Complementary angles</p><p>29. Supplementary angles</p><p>30. Linear pair (Linear pair angles) 1.2 Segment Addition Postulate</p><p>Ex. 1. S, D, and T are collinear, and S is between D and T. If DT = 40, DS = 2x -8, and ST = 3x – 12, find x, DS, and ST. </p><p>Ex. 2. S, R, and T are collinear, and S is between R and T. If RS = 3x + 4, ST = 2x – 5, and RT = 34, find x and ST. 1.2/1.3 Midpoints, Bisectors, and Vertical Angles</p><p>Notation - </p><p>Segments Angles</p><p>Midpoints</p><p>Ex. 1 If C is the midpoint of AB, AC = 3x + 1, CB = 2x + 4, find x, AC, CB, and AB.</p><p>Ex. 2 If D is the midpoint of EF, ED = 3x + 1, EF = 4x + 12, find x, ED, DF, and EF. Segment Bisectors </p><p>Ex. 3 DB bisects AC at E, AE = 2x + 6 and AC = 36, find x, AE, and EC.</p><p>Angle Bisectors</p><p>Ex. 4 If BX bisects ABC, mABX = 6x, and mXBC = 3x + 21, find x, mABX, and mABC.</p><p>Vertical Angles </p><p>Ex. 5 1 and 2 are vertical angles. If m1 = x + 3 and m2 = 5x – 25, find x and m1. 1.4 Angle Addition Postulate</p><p>Ex. 1) Point D is in the interior of ∠ABC. m∠ABC = 4x - 20, mABD = x - 4, mDBC = x + 6. Find x and mABC. </p><p>Ex 2) Point D is in the interior of ∠ABC. mABC = 108˚, mABD = x, and mDBC is 2 times</p><p> bigger than mABD. Find x and mDBC. 1.5 Complementary and Supplementary Angles</p><p>Complementary Angles -</p><p>Ex. 1 In the picture above, m1 = x + 8 and m2 = x + 2. Find x and m2. </p><p>Ex. 2 5 is the complement of 6. If m5 = 2x – 4 and m6 = x + 16, find x and m6.</p><p>Supplementary Angles - Linear Pair –</p><p>Ex. 3 In the picture above, m1 = 6x + 20 and m2 = 2x. Find x and m1. </p><p>Ex. 4 3 and 4 are a linear pair. m3 = 2x – 5 and m4 = 3x + 45. Find x and m4.</p><p>Ex 5 In the picture to the right, find x and mABE.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-