Math 125 Practice Test #4 (Chapter 10 and Chapter 11) Find the Equation of the Line Satisfying

Math 125 Practice Test #4 (Chapter 10 and Chapter 11) Find the Equation of the Line Satisfying

<p>Math 125 Practice Test #4 (Chapter 10 and Chapter 11)</p><p>Find the equation of the line satisfying the given conditions. Write the answer using function notation. 1. Through (2,- 6) ; parallel to 6x+ 3 y = 5 2. Through (-4,5) ; perpendicular to 2x- 3 y = 6 3. Through (4,0) and (-4, - 5)</p><p>Graph the following piecewise function. Use the graph to determine the domain and range. 4x- 4 if x < 2 4. f( x ) = -x +1 if x 2</p><p>5. For the piecewise function f( x ) in question 4, a) find f (0) ; b) find f (2) ; c) find f (4) ; and d) use the graph to find x such that f( x )= - 2 .</p><p>6. Write an equation to describe the variation: y varies directly as x and inversely as p2 .</p><p>7. The volume of a cone varies jointly as its height and the square of its radius. If the volume of a cone is 32p in3 when the radius is 4 in and the height is 6 in , find the volume of a cone when the radius is 3 in and the height is 5 in.</p><p>For each of the following functions, a) determine the transformations (shift up, down, left, right, reflect,....). b) determine the domain and range. 2 8. f( x )=( x - 1) + 3 9. g( x )= - x - 4 10. h( x )= - x + 3 + 5</p><p>Solve , graph, and write in interval notation for each inequality. 11. 3- 2x < - 5 12. x +1 > 0 and 3x - 4 < 0</p><p>-3x + 4 13. 5x - 2� 2 or 5x - 2 > 2 14. -6# 8 2</p><p>15. 3x + 1 > 10 16. 2x - 1 + 4 < 15</p><p>Given A ={ -2,0,2,4,10} and B ={ -3, - 2, - 1, 1, 2, 3} 17. Find A B 18. Find A B Solve the given equations. 19. 2x - 1 = 5 20. 10- 2y = 4 y - 3</p><p>Graph the inequality or system of inequalities. x5 y 21. 2x- 4 y < 12 22. x+4 y > 4</p><p>______Answer key in on the next page. Answer key:</p><p>1) f( x )= - 2 x - 2</p><p>3 2) f( x )= - x - 1 2</p><p>5 5 3) f( x ) = x - 8 2</p><p>4) 5</p><p>4</p><p>3</p><p>2</p><p>1</p><p> 3  2  1 1 2 3 4 5 6 7 8  1</p><p> 2</p><p> 3</p><p> 4</p><p> 5</p><p> 6</p><p> 7</p><p> 8</p><p> 9</p><p> 10</p><p>Domain =( -ゥ , ) ; Range =( - ,4)</p><p>5) a)f (0)= - 4, b) f (2) = - 1, c) f (4) = - 3, and d) x = 3</p><p> kx 6) y = p2 7) 15p in3</p><p>8) a) Start with x2 , shift right 1, then shift up 3 (Blue graph is x2 , Red graph is (x - 1)2 + 3) b) Domain =( -ゥ , ) ; Range = (3, )</p><p>9) a) Start with x , reflect across y-axis, then shift down 4 (Blue graph is x , Red graph is -x - 4 ) b) Domain =( - ,0) ; Range =( - 4, )</p><p> x  4 y 10</p><p>5</p><p> x  10  5 5 10</p><p> 5</p><p> 10 10) a) Start with x , shift left 3, reflect across the x-axis, then shift up 5 (Blue graph is x , Red graph is -x +3 + 5 ) b) Domain =( -ゥ , ) ; Range =( - , 5) y 10</p><p>5</p><p> x  10  5 5 10</p><p> 5</p><p> 10</p><p>4  4  11.) x  4 ; (4,) 12.) x  1 and x  ; 1,  3  3 </p><p>4  4  16  16 13.) x  0 or x  ; (,0]  , 14.)  4  x  ;  4, 5  5  3  3 </p><p>11 骣 11 15.) x  3 or x  ; 琪-ト,( 3, ) 16.)  5  x  6 ; (-5,6) 3 桫 3</p><p>17.) A  B  {3,2,1,0,1, 2,3, 4,10} 18.) A  B  {2, 2}</p><p>13 7 19.) x  3; x  2 20.) x  ; x   6 2</p><p>21.) 22.) </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us