AP Calculus Summer Review Packet

AP Calculus Summer Review Packet

<p> AP Calculus Summer Review Packet</p><p>This packet is a review of the entering objectives for AP Calculus and is due on the first day back to school. It is to be done NEATLY and on a SEPARATE sheet of paper. Have a great summer.</p><p>I. Simplify. Show the work that leads to your answer. x  4 x3 8 5  x x2 4 x  32 1. 2. 3. 4. x 2  3x  4 x  2 x 2  25 x2 16</p><p>II. Trigonometric Identities.</p><p>1. Pythagorean = ______2. cos 2x = ______3. sin 2x = ______</p><p>III. Simplify each expression. 2 1 1 1 1 x2  2x 1 8 1.  2. 3. 3 x 3 4.   x h x 10 2 2 x x6 x  9 x  1 x  2 x  3 x5</p><p>IV. Solve for z: 1. 4x + 10yz = 0 2. y2 + 3yz – 8z – 4x = 0</p><p>V. If; f(x) = {(3,5), (2,4), (1,7)} g(x) = x  3 h(x)= {(3,2), (4,3), (1,6)} k(x) = x2 + 5 determine each of the following: 1. (f + h)(1) = 2. (k – g)(5) = 3. (f ◦ h)(3) = 4. (g ◦ k)(7) = </p><p>1 5. f -1(x) = 6. k-1(x) = 7. = 8. (kg)(x) = f( x )</p><p>VI. Miscellaneous: Follow the directions for each problem.</p><p> f( x h )  f ( x ) 1. Evaluate and simplify if f(x) = x2 – 2x. h 2. Expand (x + y)3 3 5 3. Simplify: x2( x x 2  x2 ) 4. Eliminate the parameter and write a rectangular equation for x = t2 + 3 y = 2t</p><p> page 1 AP Calculus Summer Review Packet</p><p>VII. Expand and simplify 4 n2 3 1 1.  2.  3 n0 2 n1 n</p><p>VIII. Simplify x 1. 2. eln3 3. e(1 lnx ) x</p><p>7 4. ln 1 5. ln e 6. log3(1/3)</p><p>1 3ln x 7. log 1/2 8 8. ln 9. 2 e 4xy2 10. 1 11. 272/3 12. (5a2/3)(4a3/2)  12x3 y5 3(n  1)! 13. (4a5/3) 3/2 14. 5n !</p><p>IX. Using the point-slope form y – y1 = m(x – x1), write an equation for the line </p><p>1. with slope –2, containing the point (3, 4) 1. ______2. containing the points (1, -3) and (-5, 2) 2. ______3. with slope 0, containing the point (4, 2) 3. ______4. parallel to 2x – 3y = 7 and passes through (5 , 1) 4. ______5. perpendicular to the line in problem #1, containing 5. ______the point (3, 4)</p><p>X. Given the vectors v = -2i + 5j and w = 3i + 4j, determine 1 1. v 2. w – v 3. length of w 4. the unit vector for v 2</p><p>XI. Without a calculator, determine the exact value of each expression.  3 1. sin 0 2. sin 3. sin 4. cos  2 4 7  7  5. cos 6. cos 7. tan 8. tan 6 3 4 6 2  1 7 9. tan 10. tan 11. cos(Sin-1 ) 12. Sin-1(sin ) 3 2 2 6</p><p>XII. For each function, determine its domain and range.</p><p>1. y x  4 2. y x2  4 3. y4  x2 4. y x2  4</p><p> page 2 AP Calculus Summer Review Packet</p><p>XIII. Determine all points of intersection. 1. parabola y = x2 + 3x –4 and 2. y = cos x and y = sin x in the line y = 5x + 11 first quadrant</p><p>XIV. Solve for x, where x is a real number. Show the work that leads to your solution. x 4  1 1. x2 + 3x – 4 = 14 2.  0 3. (x – 5)2 = 9 x 3 4. 2x2 + 5x = 8 5. (x + 3)(x – 3) > 0 6. x2 – 2x - 15  0 7. 12x2 = 3x 8. sin 2x = sin x , 0  x  2 9. |x – 3| < 7 10. (x + 1)2(x – 2) + (x + 1)(x – 2)2 = 0 11. 272x = 9x-3 12. log x + log(x – 3) = 1 13. e3 k = 5 14. ln y = 2t - 3</p><p>XV. Graph each function. Give its domain and range. 1. y = sin x 2. y = cos x 3. y = tan x</p><p> x  4 4. y = x3 – 2x2 – 3x 5. y = x2 – 6x + 1 6. y = x  1 x 2  4 7. y = 8. y = ex 9. y = x x  2</p><p>10. y = 3 x 11. y = ln x 12. y = |x + 3| - 2</p><p>x2 if x < 0 1  13. y  14. y =  x + 2 if 0 x  3 x  4 if x > 3</p><p>XVI. Graph each of the following. Then, dentify, by name, each polar graph. Give at least one characteristic of each graph (e.g. radius, location, length of petal, point (other than the pole) on the graph, etc.) </p><p>1. r = 2 ______</p><p>2. r = 3 sin θ ______</p><p>3. r = 1 + sin θ ______</p><p>4. r = 2cos 3θ ______</p><p> page 3 AP Calculus Summer Review Packet</p><p>XVII. Sequences and series. Evaluate each of the following.</p><p> n 5 4 50  2  2 1.   2)  (2n  4) 3)  n  n 4)  (2n  4) n1  3  n1 n1 n1</p><p> st 5. Find the 131 term in the arithmetic sequence in which t3  7 & t9  61.</p><p>6. Find the first two terms of the geometric sequence for which t5  36 2 & r  2 .</p><p>XVIII. Growth, decay, and logistics. </p><p>1. Write a logistic model with the following characteristics…</p><p>Limit to growth = 30 Initial Value = 12 Passes through ( 2 , 20 )</p><p>2. Write the equation for the exponential model that passes through….</p><p> 243  3  2a) ( -2 , 12 ) and ( 0 , 3 ) 2b)  5,  and 1,   2   2 </p><p>3. Fill in the blanks…</p><p>Domain: ______ x Fill in the blanks for f (x)  2(5) . Range: ______Continuous ( yes/no) _____ Increasing: ______lim f (x)  ______x</p><p>Decreasing: ______lim f (x)  ______x</p><p>H.A. ______Upper bound: ______</p><p>Lower bound: ______</p><p> page 4</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us