Table 2 Population Dynamics Models Fitted to Time Series of C

Table 2 Population Dynamics Models Fitted to Time Series of C

<p> Table A1 Population dynamics models fitted to time series of C. venustus (1990-2007). </p><p>Estimated parameters 2 Log Models for Calomys venustus R AICc ΔAICc Likelihood wi wi/wj k (likelihood) a b c d f</p><p>A Rt=b-exp(a×Cvt-1+c)+d×mediaspr 0.11 1.7 1.80** 0.337. 0.63 33.543 0.000 1.000 0.189 1.000 -13.608 4</p><p>B Rt=b-exp(a×Cvt-1+c+d×sumRain)+f×mediaspr 0.11. 1.7 1.90** -0.0003 0.34 0.71 33.565 0.021 0.989 0.187 1.011 -9.060 5</p><p>C Rt=b-exp(a×Cvt-1+c)+d×sumRain 0.46** 1.7 -0.36 0.0027. 0.61 34.503 0.960 0.619 0.117 1.616 -11.587 4</p><p>D Rt=b-exp(a×Cvt-1+c) 0.63** 1.7 -1.28* 0.49 35.506 1.963 0.375 0.071 2.668 -13.833 3</p><p>E Rt=b-exp(a×Cvt-1+c+d×(sprRain+sumRain)+f×mediaspr) 0.55** 1.7 4.42. -0.0011117. -0.24* 0.68 35.585 2.041 0.360 0.068 2.775 -10.063 5</p><p>F Rt=b-exp(a×Cvt-1+c)+d×(sprRain+sumRain) 0.41* 1.7 -0.13 0.0016 0.58 35.703 2.160 0.340 0.064 2.945 -12.186 4</p><p>G Rt=b-exp(a×Cvt-1+c+d×NDVIminanual)+f×mediaspr 0.11 1.7 2.01** -0.352 0.369. 0.65 36.681 3.138 0.208 0.039 4.801 -10.613 5</p><p>H Rt=b-exp(a×Cvt-1+c+d×sumRain) 0.68** 1.7 -1.03 -0.0012 0.56 36.793 3.250 0.197 0.037 5.078 -12.732 4</p><p>I Rt=b-exp(a×Cvt-1+c+d×sumRain+f×mediaspr) 0.59** 1.7 3.16 -0.0013497 -0.197. 0.65 36.875 3.331 0.189 0.036 5.289 -10.711 5</p><p>J Rt=b-exp(a×Cvt-1+c+d×sprRain)+f×mediaspr 0.09 1.7 1.95** -0.0001 0.36. 0.65 36.985 3.441 0.179 0.034 5.588 -10.768 5</p><p>K Rt=b-exp(a×Cvt-1+c+d×(sprRain+sumRain)) 0.65** 1.7 -0.87 -0.00069 0.54 37.423 3.880 0.144 0.027 6.959 -13.043 4</p><p>L Rt=b-exp(a×Cvt-1+c)+d×sprRain+f×sumRain 0.43* 1.7 -0.21 0.00053 0.00269 0.61 38.445 4.901 0.086 0.016 11.595 -11.499 5</p><p>M Rt=b-exp(a×Cvt-1+c+d×sprRain)+f×sumRain 0.46** 1.7 -0.3 -0.00016 0.0027 0.61 38.535 4.991 0.082 0.016 12.129 -11.540 5</p><p>N Rt=b-exp(a×Cvt-1+c)+d×winTmin 0.71* 1.7 -1.62 0.047 0.51 38.553 5.010 0.082 0.015 12.244 -13.608 4</p><p>O Rt=b-exp(a×Cvt-1+c)+d×sprRain 0.55* 1.7 -0.89 0.0008 0.5 38.643 5.100 0.078 0.015 12.807 -13.656 4</p><p>P Rt=b-exp(a×Cvt-1+c+d×sprRain+f×mediaspr) 0.50* 1.7 3.95 -0.001096 -0.229. 0.61 38.765 5.221 0.073 0.014 13.607 -11.657 5</p><p>Q Rt=b-exp(a×Cvt-1+c+d×sprRain) 0.62** 1.7 -1.16 -0.0003 0.5 38.873 5.330 0.070 0.013 14.368 -13.772 4</p><p>R Rt=b-exp(a×Cvt-1+c+d×NDVIminanual+f×mediaspr) 0.54* 1.7 3.81 -2.141 -0.211 0.60 39.046 5.502 0.064 0.012 15.660 -11.796 5</p><p>S Rt=b-exp(a×Cvt-1+c+d×NDVIminanual+f×sumRain) 0.69** 1.7 -0.62 -1.394 -0.001 0.57 40.431 6.888 0.032 0.006 31.312 -12.488 5</p><p>T Rt=b-exp(a×Cvt-1+c+d×sumRain)+f×sprRain 0.58* 1.7 -0.63 -0.00103 0.00084 0.57 40.465 6.921 0.031 0.006 31.836 -12.504 5</p><p>U Rt=b-exp(a×Cvt-1+c+d×sumRain+f×winTmin) 0.68** 1.7 -1.14 -0.0011 -0.0224 0.57 40.475 6.931 0.031 0.006 31.996 -12.513 5</p><p>V Rt=b-exp(a×Cvt-1+c+d×sumRain)+f×winTmin 0.72* 1.7 -1.19 -0.00116 0.0247 0.56 40.775 7.231 0.027 0.005 37.174 -12.663 5</p><p>W Rt=b-exp(a×Cvt-1+c+d×sprRain+f×sumRain) 0.67** 1.7 -0.98 -0.00013 -0.0011 0.56 40.885 7.341 0.025 0.005 39.276 -12.718 5 a non-linearity coefficient, b maximum finite reproductive rate, c equilibrium point, d, e and f coefficients for different effects, R2 coefficient of determination, AICc Akaike information criterion corrected for small sample bias, ΔAICc differences in AICc, likelihood exp(-ΔAICc/2), wi</p><p>Akaike weights, wi/wj evidence ratios, k number of estimated parameters, Rt = ln(Nt) - ln(Nt-1) realized logarithmic per-capita population growth rate, Cvt-1 logarithmic abundance of C. venustus in t-1, sum summer, spr spring, win winter, Tmin minimum temperature, media mean temperature, NDVIminannual minimum annual NDVI, ** P <0.01, *P < 0.05, P < 0.1 Table A2 Population dynamics models fitted to A. azarae time series (1990-2007). </p><p>Estimated parameters 2 Log Models for Akodon azarae R AICc ΔAICc Likelihood wi wi/wj k ( likelihood) a b c d f</p><p>A.1 Rt=b-exp(a×Aat-1+c)+d×NDVIminanual 2.3772. -1.5827* -8.6174. 6.7000** 0.76 10.535 0.000 1.000 0.646 1.000 2.460 5</p><p>B.1 Rt=b-exp(a×Aat-1+c+d×sprRain+sumRain))+f×NDVIminanual 1.7018 -1.3565* -5.4979 -0.0009 6.3833** 0.78 13.970 3.435 0.180 0.116 5.570 3.215 6</p><p>C.1 Rt=b-exp(a×Aat-1+c+d×NDVIminanual) 1.1071 0.9340 -1.7532 -6.2628 0.69 14.537 4.001 0.135 0.087 7.394 0.459 5</p><p>D.1 Rt=b-exp(a×Aat-1+c+d×sprRain+sumRain)+f×NDVIminanual) 0.3928 2.2411 0.6540 -0.0005 -2.5964 0.76 15.070 4.535 0.104 0.067 9.655 2.665 6</p><p>E.1 Rt=b-exp(a×Aat-1+c+d×sprRain)+f×NDVIminanual 2.3867. -1.5405* -8.5781 -0.0003 6.5527** 0.76 15.389 4.853 0.088 0.057 11.321 2.506 6</p><p>F.1 Rt=b-exp(a×Aat-1+c) 3.6090 0.3079 -13.4200 0.47 19.844 9.308 0.010 0.006 105.016 -4.255 4</p><p>G.1 Rt=b-exp(a×Aat-1+c)+d×sprRain+sumRain) 3.1849 -0.4130 -11.9529 0.0011 0.57 20.420 9.884 0.007 0.005 140.061 -2.483 5</p><p>H.1 Rt=b-exp(a×Aat-1+c)+d×NDVImedanual 5.6775 -2.3810 -21.1665 5.2198 0.55 21.197 10.662 0.005 0.003 206.625 -2.871 5</p><p>I.1 Rt=b-exp(a×Aat-1+c)+d×sprRain 4.5052 -0.1736 -16.7778 0.0013 0.54 21.331 10.795 0.005 0.003 220.900 -2.938 5</p><p>J.1 Rt=b-exp(a×Aat-1+c)+d×mediaspr 6.7987 3.2789 -25.1549 -0.1552 0.52 22.148 11.612 0.003 0.002 332.336 -3.347 5</p><p>K.1 Rt=b-exp(a×Aat-1+c+d×sprRain) 3.2057 0.3360 -11.2707 -0.0021 0.51 22.608 12.072 0.002 0.002 418.257 -3.577 5</p><p>L.1 Rt=b-exp(a×Aat-1+c+d×NDVImedanual) 2.8365 0.3637 -8.1409 -4.9337 0.50 22.745 12.209 0.002 0.001 447.926 -3.645 5</p><p>M.1 Rt=b-exp(a×Aat-1+c)+d×sumRain 2.8489 0.0792 -10.6405 0.0008 0.49 23.066 12.531 0.002 0.001 526.000 -3.806 5</p><p>N.1 Rt=b-exp(a×Aat-1+c)+d×winTmin 4.0558 0.4053 -15.1443 0.0350 0.49 23.292 12.757 0.002 0.001 588.968 -3.919 5</p><p>O.1 Rt=b-exp(a×Aat-1+c+d×sumRain) 3.9025 0.2937 -14.6197 0.0004 0.47 23.953 13.417 0.001 0.001 819.538 -4.249 5</p><p>P.1 Rt=b-exp(a×Aat-1+c)+d×sprRain+f×sumRain 3.7447 -0.4378 -14.0249 0.0014 0.0008 0.57 25.146 14.611 0.001 0.000 1488.230 -2.373 6</p><p>Q.1 Rt=b-exp(a×Aat-1+c+d×sprRain)+e×mediaspr 7.0751 3.5131 -25.3443 -0.0027 -0.1672 0.56 25.531 14.995 0.001 0.000 1803.788 -2.565 6</p><p>R.1 Rt=b-exp(a×Aat-1+c+d×sprRain)+f×sumRain 2.2208 0.0639 -7.5940 -0.0023 0.0011 0.55 25.900 15.365 0.000 0.000 2169.778 -2.750 6</p><p>S.1 Rt=b-exp(a×Aat-1+c+d×sumRain)+f×sprRain 3.8267 -0.1953 -13.8526 -0.0015 0.0015 0.55 26.066 15.531 0.000 0.000 2357.668 -2.833 6</p><p>T.1 Rt=b-exp(a×Aat-1+c+d×sumRain)+f×mediaspr 8.6368 3.8129 -33.0079 0.0038 -0.1831 0.54 26.477 15.942 0.000 0.000 2895.591 -3.039 6</p><p>U.1 Rt=b-exp(a×Aat-1+c+d×sprRain+f×mediaspr) 3.4601 0.3413 -16.0979 -0.0020 0.1994 0.53 26.794 16.259 0.000 0.000 3392.293 -3.197 6</p><p>V.1 Rt=b-exp(a×Aat-1+c+d×sprRain)+f×winTmin 3.2974 0.4426 -11.6106 -0.0024 0.0334 0.53 26.879 16.343 0.000 0.000 3538.940 -3.239 6</p><p>W.1 Rt=b-exp(a×Aat-1+c+d×sprRain+f×sumRain) 2.3809 0.4084 -7.8384 -0.0021 -0.0013 0.52 27.283 16.747 0.000 0.000 4331.144 -3.441 6</p><p>X.1 Rt=b-exp(a×Aat-1+c+d×sprRain+f×winTmin) 3.9403 0.3003 -13.5902 -0.0022 0.0783 0.51 27.377 16.842 0.000 0.000 4540.682 -3.489 6 a non-linearity coefficient, b maximum finite reproductive rate, c equilibrium point, d and f coefficients for different effects, R2 coefficient of</p><p> determination, AICc Akaike information criterion corrected for small sample bias, ΔAICc differences in AICc, likelihood exp(-ΔAICc/2), wi Akaike weights, wi/wj evidence ratios, k number of estimated parameters, Rt = ln(Nt) - ln(Nt-1) realized logarithmic per-capita population growth rate, Aat-1 logarithmic abundance of A. azarae in t-1, sum summer, spr spring, win winter, Tmin minimum temperature, media mean temperature,</p><p>NDVIminannual minimum annual NDVI, NDVImedannual mean annual NDVI, ** P < 0.01, *P < 0.05, P < 0.1 Table A3 Population dynamics models fitted to A. azarae time series (1990-2007, 4 points removed). </p><p>Estimated parameters 2 Log Models for Akodon azarae R AICc ΔAICc Likelihood wi wi/wj k a b c d f ( likelihood) A.2 Rt =b-exp(a×Aat-1+c) 2.98 * 0.63 ** -10.77 * 0.87 1.63 0 1 0.273 1 5.68643 4 B.2 Rt=b-exp(a×Aat-1+c+d×sprRain) 3.05** 0.62** -10.64* -0.0013 0.91 2.411 0.7814 0.6765734 0.185 1.478 8.082232 5</p><p>C.2 Rt=b-exp(a×Aat-1+c)+d×sprRain 3.64 * 0.21 -13.28* 0.000988. 0.91 2.611 0.9814 0.612189 0.167 1.6335 7.982075 5 D.2 Rt=b-exp(a×Aat-1+c+d×(sprRain+sumRain)) 2.96* 0.61** -9.93* -0.0013 0.9 3.311 1.6814 0.4314023 0.118 2.318 7.632407 5</p><p>E.2 Rt=b-exp(a×Aat-1)+c+d×(sprRain+sumRain) 3.50* 0.054 -12.83* 0.0007 0.9 3.711 2.0814 0.3532023 0.096 2.8312 7.430642 5</p><p>F.2 Rt=b-exp(a×Aat-1+c)+d×mediaspr 3.42* 2.09 -12.40* -0.076 0.88 5.691 4.0614 0.1312417 0.036 7.6195 6.442932 5</p><p>G.2 Rt=b-exp(a×Aat-1+c+d×sprRain)+e×mediaspr 3.59** 2.33. -12.59* -0.0014. -0.089 0.93 6.75 5.12 0.0773047 0.021 12.936 9.625613 6</p><p>H.2 Rt=b-exp(a×Aat-1+c+d×sumRain) 3.29* 0.61** -12.15* 0.000737 0.87 6.751 5.1214 0.0772495 0.021 12.945 5.909759 5</p><p>I.2 Rt=b-exp(a×Aat-1+c)+d×winTmin 2.83* 0.62* -10.16. -0.01 0.87 7.081 5.4514 0.0654994 0.018 15.267 5.748096 5</p><p>J.2 Rt=b-exp(a×Aat-1+c)+d×sumRain 2.98 * 0.57 -10.79 * 0.000151 0.87 7.131 5.5014 0.0638822 0.017 15.654 5.722554 5</p><p>K.2 Rt=b-exp(a×Aat-1+c+d×sprRain+e×mediaspr) 3.55* 0.58** -14.61* -0.0014. 0.1 0.92 7.71 6.08 0.0478349 0.013 20.905 9.147052 6</p><p>L.2 Rt=b-exp(a×Aat-1+c+d×sprRain+e×winTmin) 3.25* 0.61** -11.14* -0.00137 0.047 0.91 8.88 7.25 0.0266491 0.007 37.525 8.560116 6</p><p>M.2 Rt=b-exp(a×Aat-1+c+d×sprRain)+e×sumRain 3.11* 0.44 -10.85* -0.0015 0.00043 0.91 9 7.37 0.0250972 0.007 39.845 8.503316 6</p><p>N.2 Rt=b-exp(a×Aat-1+c+d×sprRain)+e×winTmin 2.90* 0.60** -10.08* -0.001 -0.016 0.91 9.56 7.93 0.018968 0.005 52.72 8.223262 6</p><p>O.2 Rt=b-exp(a×Aat-1+c+d×sprRain+e×sumRain) 2.98* 0.62** -10.26* -0.0014 0.00042 0.91 9.66 8.03 0.018043 0.005 55.423 8.172857 6</p><p>P.2 Rt=b-exp(a×Aat-1+c)+d×sprRain+e×sumRain 3.69* 0.085 -13.51* 0.0010. 0.00028 0.91 9.68 8.05 0.0178634 0.005 55.98 8.164143 6</p><p>Q.2 Rt=b-exp(a×Aat-1+c+d×sumRain)+e×sprRain 3.62* 0.2 -13.20* -0.0001 0.001 0.91 10.03 8.4 0.0149956 0.004 66.686 7.98643 6</p><p>R.2 Rt=b-exp(a×Aat-1+c+d×sumRain)+e×mediaspr 4.08* 2.38 -15.22* 0.0012 -0.093 0.89 12.04 10.41 0.0054891 0.001 182.18 6.984965 6 a non-linearity coefficient, b maximum finite reproductive rate, c equilibrium point, d and f coefficients for different effects, R2 coefficient of determination, AICc Akaike information criterion corrected for small sample bias, ΔAICc differences in AICc, likelihood exp(-ΔAICc/2), wi </p><p>Akaike weights, wi/wj evidence ratios, k number of estimated parameters, Rt=ln(Nt)-ln(Nt-1) realized logarithmic per-capita population growth rate, Aat-1 logarithmic abundance of A. azarae in t-1, sum summer, spr spring, win winter, Tmin minimum temperature, media mean temperature, </p><p>** P<0.01, *P< 0.05, P<0.1</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us