Section 2.4: the Chain Rule

Section 2.4: the Chain Rule

<p> 1</p><p>Section 2.4: The Chain Rule</p><p>Practice HW from Larson Textbook (not to hand in) p. 122 # 1-23 odd, 33-97 odd</p><p>In this section, we want to differentiate different type of function compositions. The rules displayed are all special cases of the chain rule, which we discuss later in the section.</p><p>General Power Rule</p><p> d (g(x))n  n (g(x))n1 g(x) dx</p><p>Example 1: Differentiate y  (3x 2 1)5 .</p><p>Solution:</p><p>█</p><p>Example 2: Differentiate y  4 5  4x  x3 .</p><p>Solution:</p><p>█ 2 3</p><p>1 Example 3: Differentiate f (t)  . (t 5  2)4</p><p>n 1 Solution: Using the exponent law a  , start by rewriting the function as a n f (t)  (t 5  2)4 . Then using the general power rule, we calculate the derivative as follows. f (t)  4(t 5  2)41 (5t 4  0) (Take derivative using general power rule)</p><p> 4(t 5  2)5 (5t 4 ) (Simplify)</p><p> 20t 4 (t 5  2)5 (Multiply  4 and 5t 4 )</p><p> 20t 4 1  (Rewrite using exponent law a n  ) (t 5  2)5 a n</p><p>█</p><p>Example 4: Differentiate y  (x2 1)5 (3x  4)6 .</p><p>Solution:</p><p>█ 4</p><p>Derivative of an Exponential Function for an Arbitrary Base</p><p> d Base e: (e x )  e x dx</p><p> d Arbitrary Base: (a x )  (ln a) a x dx</p><p>Example 5: Differentiate y  5x .</p><p>Solution:</p><p>█</p><p>Chain Rule For Exponential Functions</p><p> d Base e: (e g(x) )  e g(x)  g(x)  g(x) e g(x) dx</p><p> d Arbitrary Base: (a g(x) )  (ln a) a g(x)  g(x)  (ln a) g(x) a x dx</p><p>Example 6: Differentiate y  e2x  52x .</p><p>Solution:</p><p>█ 5</p><p>5 Example 7: Differentiate y  e x 2x1 .</p><p>Solution:</p><p>█ 6</p><p>3 Example 8: Differentiate f (t)  t 2et .</p><p>Solution: Since this function is a product of two functions of t, we need to use the product rule. When taking the derivative of the second function, we apply the chain rule applied to the exponential function of base e. This gives</p><p>3 3 f (t)  t 2  (3t 2 )et  et  2t First Derivative of 2nd Second Derivative of First Chain Rule e function</p><p>3 3 f (t)  3t 4et  2tet (Simplify)</p><p>█</p><p>Chain Rule</p><p>Used to take the derivative of a composition of two functions.</p><p>Chain Rule</p><p> d ( f (g(x))  f (g(x)) g(x) dx</p><p>Note: The general power rule and chain rule for the exponential function are special cases of the Chain Rule. 7</p><p>Example 9: Differentiate y  (3x 2 1)5 using the general power rule and the chain rule.</p><p>Solution:</p><p>Chain Rule Applied to the Trigonometric Functions</p><p> d sin(g(x))  cos(g(x))  g(x) dx</p><p> d cos(g(x))  sin(g(x))  g(x) dx</p><p> d tan(g(x))  sec2 (g(x))  g(x) dx</p><p> d sec(g(x))  sec(g(x))  tan(g(x))  g(x) dx</p><p> d csc(g(x))  csc(g(x))  cot(g(x))  g(x) dx</p><p> d cot(g(x))  csc2 (g(x))  g(x) dx 8</p><p>Example 10: Differentiate y  sin 5x .</p><p>Solution:</p><p>█</p><p>Example 11: Differentiate y  cos2 x  cos x2 .</p><p>Solution:</p><p>█</p><p>Example 12: Differentiate y  5tan(x3  2x)  sec3x .</p><p>Solution: 9</p><p>Example 13: Differentiate y  sin 2 (cot x) .</p><p>Solution:</p><p>Formulas for the Derivative of Logarithmic Functions</p><p> d Natural Logarithm: (ln x)  dx</p><p> d ( ln x )  dx</p><p> d Logarithm of an Arbitrary Base: (log x)  dx a 10</p><p>3 Example 14: Differentiate y  x ln x  log5 x</p><p>Solution:</p><p>█</p><p>Chain Rule for the Logarithmic Functions</p><p> d Natural Logarithm: ln(g(x))  dx</p><p> d ln(| g(x) |  dx</p><p> d Logarithm of an Arbitrary Base: log (g(x))  dx a 11</p><p>4 4 Example 15: Differentiate y  2ln(x  2)  2log3 (x  2) .</p><p>Solution:</p><p>█</p><p>Example 16: Differentiate y  (ln x)3  ln x3 .</p><p>Solution:</p><p>█ 12</p><p>Example 17: Differentiate y  ln | x 4  3x2 | .</p><p>Solution: Using the chain rule formula for the natural logarithm of an absolute value d 1 ln(| g(x) |  g(x) , we calculate the derivative as follows: dx g(x)</p><p> dy 1  (4x3  6x) dx x4  3x2</p><p>4x3  6x  x4  3x2</p><p>(3t  5)7 Example 18: Differentiate y  ln . 2t 1</p><p>Solution: On this one, it is easier to use some properties of logarithms to rewrite the function before differentiating. We do this as follows:</p><p>(3t  5)7 u y  ln  ln(3t  5)7  ln(2t  1) (Use ln prop ln  lnu  ln v) 2t  1 v</p><p> 7ln(3t  5)  ln(2t  1) (Use ln prop ln u k  k ln u</p><p>We now apply the chain rule for the ln function to differentiate y  7ln(3t  5)  ln(2t  1) as follows:</p><p> dy 1 1  7 (3)  (2) dt 3t  5 2t  1</p><p> dy 21 2   dt 3t  5 2t  1</p><p>█</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us