<p> Solving a System of Equations Using Matrices</p><p>Solving a 2 2 system of linear equations by using the inverse matrix method</p><p>A system of linear equations can be solved by using our knowledge of inverse matrices.</p><p>The steps to follow are:</p><p>Express the linear system of equations as a matrix equation.</p><p>Determine the inverse of the coefficient matrix.</p><p>Multiply both sides of the matrix equation by the inverse matrix. In order to multiply the matrices on the right side of the equation, the inverse matrix must appear in front of the answer matrix.(the number of columns in the first matrix must equal the number of rows in the second matrix).</p><p>Complete the multiplication. 1 0 x c 1 The solution will appear as: where c1 and c2 are the solutions. 0 1 y c2 </p><p>Examples: Solve the following system of linear equations by using the inverse matrix method:</p><p>2x 9y 1 1. 4x y 15 </p><p>2 9 x 1 Solution: This is the matrix equation that represents the system. 4 1 y 15 </p><p>2 9 A 2 36 If A then 4 1 A 34</p><p> 1 9 1 9 A1 34 34 A1 34 34 4 2 4 2 34 34 34 34 </p><p>This is the determinant and the inverse of the coefficient matrix. 1 9 1 9 34 34 2 9 x 34 34 1 4 2 4 1 y 4 2 15 34 34 34 34 </p><p> 2 36 9 9 1 135 34 34 34 34 x 34 34 8 8 36 2 y 4 30 34 34 34 34 34 34 </p><p> 34 0 136 34 34 x 34 0 34 y 34 34 34 34 </p><p>1 0 x 4 The common point or solution is (4, -1). 0 1 y 1</p><p>This is the result of multiplying the matrix equation by the inverse of the coefficient matrix. </p><p>3x 6y 45 2. 9x 5y 8</p><p>3 6 x 45 Solution: 9 5 y 8</p><p>3 6 A 15 54 If A then 9 5 A 39</p><p> 5 6 A1 39 39 9 3 39 39 </p><p> 5 6 5 6 39 39 3 6 x 39 39 45 9 3 9 5 y 9 3 8 39 39 39 39 15 54 30 30 225 48 39 39 39 39 x 39 39 27 27 54 15 y 405 24 39 39 39 39 39 39 </p><p> 39 0 273 39 39 x 39 0 39 y 429 39 39 39 </p><p>1 0 x 7 The common point or solution is (-7, -11). 0 1 y 11</p><p>In the next example, the products will be written over the common denominator instead of being written as two separate fractions.</p><p>4x y 13 3. 6x 5y 37</p><p> 4 1 x 13 4 1 A 20 6 Solution: If A then 6 5 y 37 6 5 A 14</p><p> 5 1 5 1 A1 14 14 A1 14 14 6 4 6 4 14 14 14 14 </p><p> 5 1 5 1 4 1 x 13 14 14 14 14 6 4 6 5 y 6 4 37 14 14 14 14 </p><p> 20 6 5 5 65 37 x 14 14 14 24 24 6 20 y 78 148 14 14 14 </p><p>14 0 28 x 14 14 14 0 14 y 70 14 14 14 </p><p>1 0 x 2 The common point or solution is (-2, -5). 0 1 y 5</p><p>3x y 11 4. x 2y 8 </p><p>3 1 x 11 Solution: 1 2 y 8 </p><p> 2 1 3 1 A 6 1 1 7 7 If A then A 1 2 A 7 1 3 7 7 </p><p> 2 1 2 1 7 7 3 1 x 7 7 11 1 3 1 2 y 1 3 8 7 7 7 7 </p><p> 6 1 2 2 22 8 7 7 x 7 3 3 1 6 y 11 24 7 7 7 </p><p> 7 0 14 7 7 x 7 1 0 x 2 The common point or 0 7 y 35 0 1 y 5 7 7 7 solution is (-2, 5)</p><p>Exercises: Solve the following systems of linear equations by using the inverse matrix method: 5x 3y 21 2x 3y 48 2x 6y 3 x y 1 1. 2. 3. 4. 2x 7y 21 3x 2y 42 4x 3y 5 4x 2y 8</p><p>Answers: Solving systems of linear equations using the inverse matrix method</p><p> 5x 3y 21 5 3 1. If A then A 35 6 2x 7y 21 2 7 A 29 7 3 7 3 A1 29 29 A1 29 29 2 5 2 5 29 29 29 29 </p><p> 5 3 x 21 2 7 y 21</p><p> 7 3 7 3 29 29 5 3 x 29 29 21 2 5 2 7 y 2 5 21 29 29 29 29 </p><p> 35 6 21 21 147 63 29 29 x 29 10 10 6 35 y 42 105 29 29 29 </p><p> 29 0 210 29 29 x 29 0 29 y 147 29 29 29 </p><p>1 0 x 7.24 0 1 y 5.07 2x 3y 48 2 3 2. If A then A 4 9 3x 2y 42 3 2 A 5</p><p> 2 3 2 3 A1 5 5 A1 5 5 3 2 3 2 5 5 5 5 </p><p>2 3 x 48 3 2 y 42</p><p> 2 3 2 3 5 5 2 3 x 5 5 48 3 2 3 2 y 3 2 42 5 5 5 5 4 9 6 6 96 126 5 5 x 5 6 6 9 4 y 144 84 5 5 5 </p><p> 5 0 30 5 5 x 5 0 5 y 60 5 5 5 </p><p>1 0 x 6 0 1 y 12</p><p>2x 6y 3 2 6 3. If A then A 6 24 4x 3y 5 4 3 A 18</p><p> 3 6 A1 18 18 4 2 18 18 2 6 x 3 4 3 y 5</p><p> 3 6 3 6 18 18 2 6 x 18 18 3 4 2 4 3 y 4 2 5 18 18 18 18 </p><p> 6 24 18 18 9 30 18 18 x 18 8 8 24 6 y 12 10 18 18 18 </p><p>18 0 21 18 18 x 18 0 18 y 2 18 18 18 </p><p>1 0 x 1.16 0 1 y .1 1 </p><p> x y 1 1 1 4. If A then A 2 4 4x 2y 8 4 2 A 2 2 1 A1 2 2 4 1 2 2 </p><p> 1 1 x 1 4 2 y 8</p><p> 2 1 2 1 1 1 x 1 2 2 2 2 4 1 4 2 y 4 1 8 2 2 2 2 2 4 2 2 2 8 x 2 2 2 4 4 4 2 y 4 8 2 2 2 </p><p> 2 0 6 x 2 2 2 0 2 y 4 2 2 2 </p><p>1 0 x 3 0 1 y 2</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-