<p>Efficient PdCl2–catalyzed Suzuki reactions using simple dicationic imidazolium salts as ligands in aqueous DMF Qing Huang ·· Jiabin Qiu · Limei Li · Guohai Xu · Zhonggao Zhou</p><p>R1 X 80 oC 0.1 - 6 h R1 R2 Pd/L K2CO3 DMF/H2O R 2 B(OH)2 26 examples Cat. 0.1 mol % Yield 85 - 99 % Cl Cl L = Me N N N N Me 1, o-. 2, m-. 3, p-.</p><p>Experimental</p><p>General considerations</p><p>Materials and methods</p><p>All chemicals employed in the synthesis were obtained commercially, and used as received without further purification. NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer. GC–MS analyses were carried out on an Agilent 6890 GC with 5973 mass detector. The dicationic imidazolium salts 1, 2, and 3 were prepared by following the literature method.</p><p>GC-MS analysis</p><p>All of the experiments were carried out on an agilent 6890 GC with 5973 mass spectral detector, using an AT.SE-30 column of 50 m length, 0.32 mm diameter and 0.5 μm film thicknesses. GC parameters for Suzuki reactions were as follows: injector temperature 280</p><p>◦C; detector temperature 280 ◦C; initial temperature 100 ◦C; initial time 5 min; temperature ramp 1, 30 ◦C min−1; final temperature 200 ◦C; ramp 2, 20 ◦C min−1; final temperature 250 ◦C; run time 30 min; inject 1.0 μL; helium as the GC carrier gas; pressure of the system was 3.5 bar.</p><p>General procedure for the Suzuki reactions</p><p>* College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China E-mail: [email protected] (Z.-G. Zhou) The appropriate amounts of the required dicationic imidazolium ligand, base (2.0 equivalents) and Pd metal precursor were added to 1,4-dioxane. The mixture was stirred at 60 oC for 30 min under nitrogen, after which the palladium catalyst was formed in situ. The 1,4-dioxane was then removed under reduced pressure and the required solvent, aryl halide (1.0 equivalent), aryl boronic acid (1.5 equivalent), and decane (internal standard) were added.</p><p>The reaction was monitored by GC–MS, and the GC yields were calculated against the added decane. On completion of the reaction, the residue was extracted with ether (3 × 3.0 mL) and the organic solvent was evaporated under reduced pressure. The crude product was purified by column chromatography, and the products were characterized by 1H and 13C NMR spectra.</p><p>The crude product was purified by column chromatography, and the products were characterized by 1H, 13C NMR spectra and the datas could be found in following.</p><p>(1) Me 4a</p><p>4-Methyl-1,1'-biphenyl (Table 3, entries 1, 2 and 9),</p><p>1 H NMR (400 MHz, CDCl3): δ 7.58 (d, J = 7.6 Hz, 2 H, Ar-H), 7.50 (d, J = 8.4 Hz, 2 H, Ar-H),</p><p>7.44 (t, J = 7.2 Hz, 2 H, Ar-H), 7.33 (t, J = 6.8 Hz, 1 H, Ar-H), 7.25 (t, J = 3.2 Hz, 2 H, Ar-H),</p><p>2.41 (s, 3 H, CH3) ppm.</p><p>(2) NC 4b</p><p>[1,1'-biphenyl]-4-carbonitrile (Table 3, entry 3)</p><p>1 H NMR (400 MHz, CDCl3): δ 7.53–7.64 (m, 4 H , Ar-H), 7.50 (d, 2 H, J = 7.8 Hz, Ar-H), 7.35–</p><p>7.42 (m, 3 H, Ar-H), ppm.</p><p>(3) MeO 4c</p><p>4-Methoxy-1,1'-biphenyl (Table 3, entry 4),</p><p>1 H NMR (400 MHz, CDCl3): δ 7.54 (t, J = 8.0 Hz, 4 H, Ar-H), 7.42 (t, J = 7.6 Hz, 2 H, Ar-H), 7.31 (d, J = 7.2 Hz, 1 H, Ar-H), 6.98 (d, J = 8.8 Hz, 2 H, Ar-H), 3.86 (s, 3 H, OCH3) ppm.</p><p>(4) MeOC 4d</p><p>1-([1,1'-biphenyl]-4-yl)ethanone (Table 3, entry 5),</p><p>1 H NMR (400 MHz, CDCl3): δ 8.19 (d, J = 7.6 Hz, 1 H, Ar-H), 7.97 (d, J = 8.0 Hz, 2 H, Ar-H),</p><p>7.33~7.63 (m, 5 H, Ar-H), 7.18 (s, 1 H, Ar-H), 2.57 (s, 3 H, CH3) ppm.</p><p>(5) 4e Me</p><p>2-Methyl-1,1'-biphenyl (Table 3, entry 6),</p><p>1 H NMR (400 MHz, CDCl3): δ 7.39-7.43 (m, 2 H, Ar-H), 7.31-7.35 (m, 3 H, Ar-H), 7.24-7.26</p><p>(m, 4 H, Ar-H), 2.25 (s, 3 H, CH3) ppm.</p><p>(6) 4f</p><p>Biphenyl (Table 3, entry 7),</p><p>1 H NMR (400 MHz, CDCl3, TMS) δ 7.60 (d, 4 H, J = 7.5 Hz), 7.44 (t, 4 H, J = 7.2 Hz), 7.35 (t,</p><p>2 H, J = 7.2 Hz) ppm.</p><p>(7) 4g OMe</p><p>2-methoxy-1,1'-biphenyl (Table 3, entry 8)</p><p>1H NMR (400 MHz, CDCl3): δ 7.58–7.56 (m, 2H, Ar-H), 7.43–7.39 (m, 2H, Ar-H), 7.35–</p><p>7.31(m, 2H, Ar-H), 7.17–7.12 (m, 2H, Ar-H), 6.87 (dd, J = 8.4 and 2.4 Hz, 1H, Ar-H), 3.82 (s, </p><p>3H, CH3), ppm.</p><p>(8) F3C 4h</p><p>4-(trifluoromethyl)-1,1'-biphenyl (Table 3, entry 10), 1 H NMR (400 MHz, CDCl3): δ 7.33 (t, J = 7.2 Hz, 1 H, Ar-H), 7.40 (t, J = 7.4 Hz, 2 H, Ar-H),</p><p>7.54 (d, J = 6.8 Hz, 2 H, Ar-H), 7.62 (s, 4 H, Ar-H) ppm.</p><p>F</p><p>(9) MeOC F 4i</p><p>F</p><p>1-(3',4',5'-trifluoro-[1,1'-biphenyl]-4-yl)ethanone (Figure 1),</p><p>1 H NMR (400 MHz, CDCl3): δ 8.04 (d, 2 H, J = 8.0 Hz, Ar-H), 7.60 (d, 2 H, J = 8.0 Hz, Ar-H),</p><p>13 7.24 (m, 2 H, Ar-H), 2.65 (s, 3 H, CH3 ), ppm. C NMR (100 MHz, CDCl3, δ): 197.41, 151.52,</p><p>142.47, 139.79, 136.72, 135.97, 129.12, 127.03, 111.42, 111.26, 26.69, ppm. </p><p>F</p><p>(10) MeOC 4j</p><p>F</p><p>1-(3',5'-difluoro-[1,1'-biphenyl]-4-yl)ethanone (Figure 1),</p><p>1 H NMR (400 MHz, CDCl3): δ 8.03 (d, 2 H, J = 8.0 Hz, Ar-H), 7.62 (d, 2 H, J = 8.0 Hz, Ar-H),</p><p>13 7.11 (m, 2 H, Ar-H), 6.82 (m, 2 H, Ar-H), 2.64 (s, 3 H, CH3 ), ppm. C NMR (100 MHz, CDCl3,</p><p>δ): 197.45, 164.56, 162.08, 143.37, 143.11, 136.76, 129.04, 127.16, 110.24, 110.05, 103.41,</p><p>26.65 ppm.</p><p>(11) MeOC CH3 4k</p><p>1-(4'-methyl-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3): δ8.02 (d, J = 8.0 Hz, 2 H, Ar-H) 7.67 (d, J = 8.0 Hz, 2 H, Ar-H),</p><p>7.53 (d, J =8.0 Hz, 2 H, Ar-H), 7.28 (d, J = 8.0 Hz, 2 H, Ar-H), 2.63 (s, 3 H, CH3), 2.41 (s, 3 H,</p><p>13 CH3), ppm. C NMR (100 MHz, CDCl3) δ 197.5, 141.1, 140.2, 135.6, 129.1, 126.8, 126.4,</p><p>126.2, 122.1, 26.6 ppm. (12) MeOC 4l OH</p><p>1-(4'-(hydroxymethyl)-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3): δ 8.02 (d, 2 H, J = 8.0 Hz, Ar-H), 7.68 (d, 4 H, J = 8.0 Hz, Ar-H),</p><p>7.47 (d, 2 H, J = 8.0 Hz, Ar-H), 4.76 (s, 2 H, CH2), 2.64 (s, 2 H, CH3) ppm.</p><p>13 C NMR (101 MHz, CDCl3) δ 197.71, 145.39, 141.00, 139.21, 135.91, 128.93, 127.52, 127.43, 127.13, 64.93, 26.61 ppm</p><p>(13) MeOC F 4m</p><p>1-(4'-fluoro-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3): δ 8.03 (d, 2 H, J = 8.0 Hz, Ar-H), 7.60 (m, 4 H, Ar-H), 7.16 (t, 2 H,</p><p>13 J = 12.0 Hz, Ar-H), 2.64 (s, 3 H, CH3) ppm. C NMR (100 MHz, CDCl3): δ197.70, 164.24,</p><p>161.78, 144.75, 135.99, 135.84, 128.99, 128.90, 127.08, 116.04, 115.83, 26.79 ppm.</p><p>(14) MeOC CF3 4n</p><p>1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethanone (Figure 1).</p><p>1 H NMR (400 MHz, CDCl3): δ 8.06 (d, 2 H, J = 8.0 Hz, Ar-H), 7.73 (s, 2 H, Ar-H), 7.68 (d, 2 H,</p><p>13 J = 8.0 Hz, Ar-H), 2.65 (s, 3 H, CH3), ppm. C NMR (100 MHz, CDCl3): δ 197.50, 144.10,</p><p>143.37, 136.61, 130.20, 129.02, 127.58, 127.42, 125.87, 125.48, 122.77, 26.61 ppm.</p><p>(15) MeOC CN 4o</p><p>4'-acetyl-[1,1'-biphenyl]-4-carbonitrile (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3): δ 8.07(d, 2 H, J = 8.0 Hz, Ar-H), 7.75 (m, 4 H, Ar-H), 7.69 (d, 2 H,</p><p>13 J = 8.0 Hz, Ar-H), 2.65 (s, 3 H, CH3), ppm. C NMR (100 MHz, CDCl3): δ197.47, 144.27,</p><p>143.48, 136.89, 132.73, 129.12, 127.93, 127.45, 118.65, 111.86, 26.73. ppm.</p><p>(16) MeOC O 4p 1-(4'-phenoxy-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3, TMS) δ 8.01 (d, J = 8.0 Hz, 2 H, Ar-H), 7.65 (d, J = 8.0 Hz, 2 H, Ar-</p><p>H), 7.59 (d, J = 8.0 Hz, 2 H, Ar-H), 7.37 (t, J = 8.0 Hz, 4 H, Ar-H), 7.14 (t, J = 8.0 Hz, 1 H, Ar-</p><p>13 H), 7.05 (t, J = 8.0 Hz, 4 H, Ar-H), 2.63 (s, 3 H, CH3); C NMR (100 MHz, CDCl3, δ): 197.64,</p><p>157.84, 156.79, 145.09, 135.67, 134.69, 129.87, 128.97, 128.61, 126.87, 123.70, 119.28,</p><p>118.98, 26.60 ppm.</p><p>O MeOC (17) 4q O Me</p><p>Ethyl 4'-acetyl-[1,1'-biphenyl]-4-carboxylate (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3, TMS) δ 8.14 (d, J = 8.0 Hz, 2 H, Ar-H), 8.06 (d, J = 8.0 Hz, 2 H, Ar-</p><p>H), 7.72 (d, J = 8.0 Hz, 2 H, Ar-H), 7.69 (t, J = 8.0 Hz, 2 H, Ar-H), 4.41 (q, J = 7.2 Hz, 2 H,</p><p>13 CH2), 2.63 (s, 3 H, COCH3), 1.43 (t, J = 7.2 Hz, 2 H, CH3); C NMR (100 MHz, CDCl3, δ):</p><p>197.65, 166.30, 144.53, 144.01, 136.48, 130.20, 128.99, 127.45, 127.20, 113.69, 61.14,</p><p>26.72, 14.36 ppm.</p><p>(18) MeOC N 4r</p><p>1-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3, TMS) δ 8.00 (d, J = 8.0 Hz, 2 H, Ar-H), 7.65 (d, J = 8.0 Hz, 2 H, Ar-</p><p>H), 7.50 (d, J = 8.0 Hz, 2 H, Ar-H), 7.28 (t, J = 8.0 Hz, 4 H, Ar-H), 7.13 (d, J = 8.0 Hz, 6 H, Ar-</p><p>13 H), 7.05 (t, J = 8.0 Hz, 2 H, Ar-H), 2.62 (s, 3 H, CH3); C NMR (100 MHz, CDCl3, δ): 197.63,</p><p>148.19, 147.43, 145.21, 135.34, 133.14, 129.39, 128.98, 127.93, 126.50, 124.79, 123.37,</p><p>123.29, 26.63 ppm.</p><p>CF3</p><p>(19) MeOC 4s</p><p>1-(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethanone (Figure 1) 1 H NMR (400 MHz, CDCl3): δ 8.08 (d, 2 H, J = 8.0 Hz, Ar-H), 7.87 (s, 1 H, Ar-H), 7.80 (d, 1 H,</p><p>13 J = 8.0 Hz, Ar-H), 7.67 (m, 3 H, Ar-H), 7.60 (m, 1 H, Ar-H), 2.66 (s, 3 H, CH3), ppm. C NMR</p><p>(100 MHz, CDCl3): δ 197.57, 144.10, 140.67, 136.47, 131.20, 130.55, 129.50, 129.07,</p><p>127.32, 124.86, 124.82, 124.02, 26.65 ppm.</p><p>(20) 4t MeOC</p><p>1-([1,1':3',1''-terphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3, TMS) δ 8.03 (d, J = 8.0 Hz, 2 H, Ar-H), 7.81 (s, 1 H, Ar-H), 7.71 (d,</p><p>J = 8.0 Hz, 2 H, Ar-H), 7.62 (m, 4 H, Ar-H), 7.52 (d, J = 8.0 Hz, 2 H, Ar-H), 7.37 (d, J = 8.0 Hz,</p><p>13 2 H, Ar-H), 2.62 (s, 3 H, CH3); C NMR (100 MHz, CDCl3, δ): 197.86, 145.76, 142.075,</p><p>140.89, 140.45, 135.99, 129.44, 129.00, 128.92, 127.64, 127.37, 127.28, 127.11, 126.23,</p><p>26.707 ppm.</p><p>NO2 (21) 4u MeOC</p><p>1-(3'-nitro-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3) δ 8.45 (s, 1 H, Ar-H), 8.23 (d, J = 8.0 Hz, 1 H, Ar-H), 8.07 (d, J =</p><p>8.0 Hz, 2 H, Ar-H), 7.95 (d, J = 8.0 Hz,1 H, Ar-H), 7.72 (d, J = 8.0 Hz, 2 H, Ar-H), 7.66 (t, J =</p><p>13 8.0 Hz, 2 H, Ar-H), 2.66 (s, 3 H, CH3) 2.66 ppm. C NMR (100 MHz, CDCl3) δ 197.42, 148.73,</p><p>142.90, 141.47, 136.83, 133.12, 130.00, 129.16, 127.32, 122.85, 122.01, 77.44, 77.12, 76.80,</p><p>26.68 ppm</p><p>MeOC (22) O 4v O</p><p>1-(4-(benzo[d][1,3]dioxol-5-yl)phenyl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3, TMS) δ 7.92 (s, 2 H, Ar-H), 7.53 (s, 2 H, Ar-H), 7.03 (s, 2 H, Ar-H),</p><p>13 6.84 (s, 1 H, Ar-H), 5.95 (s, 2 H, CH3), 2.56 (s, 3 H, CH3) ppm; C NMR (100 MHz, CDCl3) δ 197.70, 148.34, 147.89, 145.36, 135.44, 134.01, 128.93, 126.78, 121.05, 108.73, 107.56,</p><p>101.39, 26.64 ppm.</p><p>CF3</p><p>(23) MeOC 4w</p><p>CF3</p><p>1-(3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3): δ 8.10 (m, 2 H, J = 8.0 Hz, Ar-H), 8.06 (s, 2 H, Ar-H), 7.92 (s, 1 H,</p><p>13 Ar-H), 7.73(m, 2 H, J = 8.0 Hz, Ar-H), 2.68 (s, 3 H, CH3 ), ppm. C NMR (100 MHz, CDCl3): δ</p><p>197.38, 142.48, 142.04, 137.12, 132.38, 129.26, 127.50, 127.35, 124.57, 121.80, 119.14,</p><p>26.74 ppm.</p><p>MeOC (24) 4x</p><p>1-(4-(naphthalen-1-yl)phenyl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3): δ 8.00 (d, 2 H, J = 8.0 Hz, Ar-H), 7.83–7.74 (m, 3H, Ar-H), 7.51–</p><p>7.46 (m, 2H, Ar-H), 7.43–7.36 (m, 2H, Ar-H), 7.33–7.31 (m, 2H, Ar-H), 2.58 (s, 3H, CH3 ) ppm.</p><p>13 C NMR (100 MHz, CDCl3): δ 197.8, 145.7, 138.9, 135.9, 133.7, 131.1, 130.3, 128.3, 126.9,</p><p>126.3, 125.9, 125.3, 26.7 ppm.</p><p>MeOC (25) 4y</p><p>1-(4-(naphthalen-2-yl)phenyl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3) δ 8.07 (m, 3 H, Ar-H), 7.89 (m, 3 H, Ar-H), 7.79 (d, J = 8.0 Hz, 2 H,</p><p>13 Ar-H), 7.74 (d, J = 8.0 Hz, 1 H, Ar-H), 7.51(m, 3 H, Ar-H), 2.64 (s, 3 H, CH3); C NMR (100</p><p>Hz, CDCl3) δ 197.74, 145.68, 137.15, 135.89, 133.57, 133.03, 128.99, 128.72, 128.37,</p><p>127.70, 127.46, 126.58, 126.50, 126.38, 125.17, 6.68 ppm. Me</p><p>(26) MeOC 4z </p><p>Me</p><p>1-(3',5'-dimethyl-[1,1'-biphenyl]-4-yl)ethanone (Figure 1)</p><p>1 H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 8.0 Hz, 2 H, Ar-H), 7.62 (d, J = 8.0 Hz, 2 H, Ar-H),</p><p>13 7.20 (s, 2 H, Ar-H), 7.01 (s, 1 H, Ar-H), 2.59 (s, 3 H, CH3), 2.36 (s, 6 H, CH3); C NMR (100</p><p>Hz, CDCl3) δ 197.88, 146.08, 139.83, 138.49, 137.89, 135.69, 129.93, 129.72, 128.86,</p><p>127.20, 125.17, 26.60, 21.41 ppm.</p><p>Acknowledgments We gratefully thank the financial support from The National Natural</p><p>Science Foundation of China (No. 21241005 and 21201040), the Key Laboratory of Jiangxi</p><p>University for Functional Materials Chemistry.</p><p>References</p><p>[1] E. Alcalde, N. Mesquida, M. Alemany, C. Alvarez-Rúa, S. García-Granda, P. Pacheco, G. Lluïsa Pérez, Eur. J. Org. Chem. 2002, 2002, 1221. [2] S. Mohanty, D. Suresh, M. S. Balakrishna, J. T. Mague, Tetrahedron 2008, 64, 240. [3] Z. G. Zhou, M. Y. Liu, X. L. Wu, H. W. Yu, G. H. Xu, Y. R. Xie, Appl. Organomet. Chem. 2013, 27, 562. [4] H. W. Yu, J. C. Shi, H. Zhang, P. Y. Yang, X. P. Wang, Z. L. Jin, J. Mol. Catal. A: Chem. 2006, 250, 15. [5] B. P. Morgan, G. A. Galdamez, J. R. J. Gilliard, R. C. Smith, Dalton Trans. 2009, 2020. [6] M. Hanhan, Y. Senemoglu, Transition Met. Chem. 2012, 37, 109. [7] J. Xue, Z. Zhou, J. Peng, F. Du, L. Xie, G. Xu, G. Huang, Y. Xie, Transition Met. Chem. 2014, 39, 221. [8] Z. G. Zhou, J. C. Shi, Q. S. Hu, Y. R. Xie, Z. Y. Du, S. Y. Zhang, Appl. Organomet. Chem. 2011, 25, 616. [9] A. N. Marziale, D. Jantke, S. H. Faul, T. Reiner, E. Herdtweck, J. Eppinger, Green Chem. 2011, 13, 169. [10] Y. J. Kim, J. H. Lee, T. Kim, J. Ham, Z. N. Zheng, S. W. Lee, Eur. J. Inorg. Chem. 2012, 2012, 6011. [11] A. O. Eseola, D. Geibig, H. Görls, W.-H. Sun, X. Hao, J. A. O. Woods, W. Plass, J. Organomet. Chem. 2014, 754, 39. [12] X.-J. Li, J.-L. Zhang, Y. Geng, Z. Jin, J. Org. Chem. 2013, 78, 5078. [13] B. J. Gallon, R. W. Kojima, R. B. Kaner, P. L. Diaconescu, Angew. Chem. Int. Ed. 2007, 46, 7251. [14] A. Ghode, U. Shivkumar, B. Sadashiva, Bull. Mater. Sci. 1994, 17, 283. [15] H. M. Colquhoun, D. F. Lewis, Polymer 1988, 29, 1902. [16] C. Liu, Q. Ni, J. Qiu, Eur. J. Org. Chem. 2011, 2011, 3009. [17] S.-g. Liu, C.-y. Lin, H.-h. Wang, P. He, M.-l. Gong, Guangpuxue Yu Guangpu Fenxi 2010, 612. [18] W. Lv, B. Banerjee, K. L. Molland, M. N. Seleem, A. Ghafoor, M. I. Hamed, B. Wan, S. G. Franzblau, A. D. Mesecar, M. Cushman, Biorg. Med. Chem. 2014, 22, 406. [19] R. R. Jha, J. Singh, R. K. Tiwari, A. K. Verma, ARKIVOC 2013, 2, 228. [20] M. L. Clarke, M. B. France, J. A. Fuentes, E. J. Milton, G. J. Roff, Beilstein J. Org. Chem. 2007, 3, 18. [21] P. Venkatesan, J. Santhanalakshmi, J. Mol. Catal. A: Chem. 2010, 326, 99.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-