The Following Proofs Represent Frequently Recurring Patterns of Inference Found in Longer

The Following Proofs Represent Frequently Recurring Patterns of Inference Found in Longer

<p>Exam-3-Proofs-2</p><p>The following proofs represent frequently recurring patterns of inference found in longer formal proofs of validity. Familiarity with them will be useful in doing longer proofs. Construct a formal proof of validity in F or F’ for each of the following arguments. 1. 1.  A /  A  B 2. A 3.   Intro 2, 1 4. B  Elim 3 5. A  B  Intro 2-4</p><p>Here’s a case where you can use  Elim in F’ (So I misspoke yesterday in class when I said it never makes any sense to use  Elim. The requirement is that you’ve introduced some assumption that leads to a contradiction. You still have to close out the subproof wherein you made the assumption, but here we have done so. The proof in F is just slightly longer since we have to assume B for a  Intro:</p><p>1.  A /  A  B 2. A 3.  B 4. A  A  Intro 2, 1 5. B  Intro 3-4 6. A  B  Intro 2-4</p><p>2. 1. C /  D  C 2. D 3. C Reit 1 4. D  C  Intro 2-3</p><p>3. 1. E  (F  G) /  F  (E  G) 2. F 3. E 4. F  G  Elim 1, 3 5. G  Elim 4, 2 6. E  G  Intro 3-5 7. F  (EG)  Intro 2-6 4. 1. H  (I  J) /  H  I 2. H 3. I  J  Elim 1, 2 4. I  Elim 3 5. H  I</p><p>5. 1. K  L /  K  (L  M) 2. K 3. L  Elim 1, 2 4. L  M  Intro 3 5. K  (L  M)  Intro 2-4</p><p>6.</p><p>In System F:</p><p>1. N  O /  (N P)  O 2. N  P 3. N  Elim 2 4. O  Elim 1, 3 5. (N  P)  O  Intro 2-4</p><p>In System F’:</p><p>1. N  O /  (N P)  O 2. N 3. P 4. O  Elim 1, 2 5. (N  P)  O  Intro 2, 3, 4</p><p>Remember that System F’ allows us to use multiple premises for various rules including  Intro.</p><p>7. 1. (Q  R)  S /  Q  S 2. Q 3. Q  R  Intro 2 4. S  Elim 1, 3 5. Q  S  Intro 2-4 8. 1. T  U 2. T  V / T  (U  V) 3. T 4. U  Elim 1, 2 5. V  Elim 2, 4 6. U  V  Intro 4, 5 7. T  (U  V)  Intro 3-6</p><p>9. </p><p>In System F: 1. W  X 2. Y  X /  (W  Y)  X 3. W  Y 4. W  Elim 3 5. X  Elim 1, 4 6. (W  Y)  X  Intro 3-5</p><p>In System F’: 1. W  X 2. Y  X /  (W  Y)  X 3. W 4. Y 5. X  Elim 1, 3 [or 2, 4] 6. (W  Y)  X  Intro 3, 4, 5</p><p>10. 1. Z  A 2. Z  A /  A 3. Z 4. A  Elim 1, 3 5. A 6. A Reit 5 7. A  Elim 2, 3-4, 5-6 Construct a formal proof of validity for each of the following arguments in system F’.</p><p>1. 1. A  B 2.  (C   A) / C  B 3. C 4.  A 5. C  A  Intro 3, 4 6.   Intro 5, 2 7. A  Intro 4-6 8. B  Elim 1, 7 9. C  B  Intro 3-8</p><p>Please note the correction to this problem (above) in line 2.</p><p>2. 1. (G  H)  I 2.  (G  H) / I  H 3.  I 4. G   H 5. I  Elim 1, 4 6.   Intro 3, 5 7. (G  H)  Intro 4-6 8. G 9. H 10. G  H  Intro 8, 9 11.   Intro 10, 2 12. H  Intro 9-11 13. G  H  Intro 8-12 14.   Intro 7, 13 15. I  Intro 3-14 16. I  H  Intro 15</p><p>3. 1. [(M  N)  O]  P 2. Q  [(O  M)  N] /  Q  P 3.  (  Q  P) 4. Q  P DeM 3 5. Q  Elim 4 6. P  Elim 4 7. (M  N)  O  Elim 2, 5 [Note: no need to site Assoc ] 8. P  Elim 1, 7 9.   Intro 6, 8 10. Q  P  Intro 3-9 4. 1. (V  W)  (X  W) 2.  (  X  V) /  W 3. V  W  Elim 1 4. X  W  Elim 1 5. X  V DeM 2 6. X 7. W  Elim 4, 6 8.  V 9. W  Elim 3, 8 10. W  Elim 5, 6-7, 8-9</p><p>5. 1. D  (E  F) 2.  (F   D)   G /  G  E 3. G 4.  (F   D) 5. G  Elim 2, 4 6.   Intro 3, 5 7. F  D  Intro 4-6 8. D  Elim 7 9. E  F  Elim 1, 8 10. F  Elim 7 11.  E 12. F  Elim 9, 11 13.   Intro 10, 12 14. E  Intro 11-13 15. G  E  Intro 3-14</p><p>6. 1. [H  (I  J)]  (K  J) 2. L  [I  (J  H)] /  (L  K)  J 3. L  K 4. L  Elim 3 5. K  Elim 3 6. I  (J  H)  Elim 2, 4 7. K  J  Elim 1, 6 [[Note: no need to site Assoc ] 8. J  Elim 7, 5 9. (L  K)  J 7. 1. (P  Q)  (P  R) 2. (R  S)  (R  P) /  Q  S 3. P  Q  Elim 1 4. P  R  Elim 1 5. R  S  Elim 2 6. R  P  Elim 2 7. R 8. S  Elim 5, 7 9. Q  S  Intro 8 10. P 11. Q  Elim 3, 10 12. Q  S  Intro 11 13. Q  S  Intro 6, 7-9, 10-12</p><p>8. 1. (X  Y)  (X  Y) 2.  (X  Y) /  (X  Y) 3. X  Y 4. X  Elim 3 5. X  Y  Intro 4 6.   Intro 2, 5 7. (X  Y)  Intro 3-6</p><p>9. 1. J  (J  K) 2. J  L /  (J  L)  J 3. J 4. L 5. J Reit 3 6. J 7. L  Elim 2, 6 8. J Reit 6 9. J  L  Intro 8, 7 10. (J  L)  J  Intro 3, 4, 5, 6-9 10. 1. (R  R)  (T  U) 2. R  (V  V) 3.  T /  V 4. T  U  Intro 3 5. (T  U) DeM 4 6. R  R 7. T  U  Elim 1, 6 8.   Intro 5, 7 9. (R  R)  Intro 6-8 10. R Idempotence  9 11. V  V  Elim 2, 10 12. V 13. V  Elim 11, 12 14.   Intro 12, 13 15. V</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us