2004 Mu Alpha Theta Convention

2004 Mu Alpha Theta Convention

<p> 2004 Mu Alpha Theta Convention Hustle: Trigonometry</p><p>1. Solve for x  [, 2]: cos2x – sin2x = ½.</p><p>2. Find tan (cot –1 5).</p><p> x  3. Determine the amplitude of the graph of y  3  5cos  .  2 </p><p>4. Simplify sin 2 40 + sin 2 50.</p><p>5. Evaluate sec (-120) cot (300).</p><p>6. If sin t = -4/5 and  < t < 3/2, find tan t.</p><p> 2  7. Evaluate tanCos 1  .  3 </p><p>   8. Find the product of the amplitude and period of y = 2 – sin 3x   .  5 </p><p>9. Simplify sin 50 cos 5 – cos 50 sin 5.</p><p>10. For all values of  for which the expression exists, write as a single trigonometric function of : sec  tan 2 1 sec csc  tan csc</p><p>11. Find tan (x + y) if sin x = -8/17 and cos y = 12/13 where the terminal side of x lies in quadrant III and the terminal side of y lies in quadrant IV.</p><p>12. In triangle ABC, mC = 90, BC = 7, and AB = 25. Find sin B.</p><p>13. In triangle PQR, mP = 60, PR = 12, and PQ = 8. Find QR.</p><p>14. If  <  < 3/2 and cos 2 = ¾, find sin .</p><p>15. Which of the following statements is FALSE: A) sin ( + x) = – sin x B) tan (-x) = – tan x C) cos ( - ) = cos  cos  - sin  sin  D) sin ( + ) + sin ( - ) = 2 sin  cos </p><p>16. Find all values of x in the interval [0, 2] such that sin x cos x > 1.</p><p>17. For 0 < x < 2, find all x such that tan x  3  sec x . 18. If in right triangle XYZ, XY = 11, YZ = 60, and XZ > YZ, find the measure of X. Give your answer to the nearest degree.</p><p>19. To the nearest hundredth, give all solutions to tan2x – 5 = 0 on [0, 2].</p><p>20. Evaluate sin 870.</p><p>21. For all values of x for which the expression exists, write in simplest form: ½cosxsecx.</p><p>22. If the range of y = 5 – 4 sec x is (-, a]  [b, ), find a + b.</p><p>23. Using interval notation, give the range of y = 4 – 3 sin x.</p><p>24. How many complete cycles of the graph of y = 5 cos (x/3) occur on the interval x  [-12, 12]?</p><p> x    25. Write the following equation without a phase shift. y = 2cos  .  2  2004 Mu Alpha Theta Convention Hustle: Trigonometry</p><p>1. Solve for x  [, 2]: cos2x – sin2x = ½. Solution: cos 2x = ½, so 2x = /3, 5/3, 7/3, 11/3 meaning x = 7  /6, 11  /6</p><p>2. Find tan (cot –1 5). Solution: 1/5</p><p> x  3. Determine the amplitude of the graph of y  3  5cos  .  2  Solution: 5</p><p>4. Simplify sin 2 40 + sin 2 50. Solution: cos 2 50 + sin 2 50 = 1</p><p>5. Evaluate sec (-120) cot (300).  3  2 3   Solution:  2    3  3</p><p>6. If sin t = -4/5 and  < t < 3/2, find tan t. Solution: cos t = -3/5 so tan t = 4/3</p><p> 2  7. Evaluate tanCos 1  .  3  5 Solution: 2</p><p>   8. Find the product of the amplitude and period of y = 2 – sin 3x   .  5  2 2 Solution: amplitude = 1; period = so product is 3 3</p><p>9. Simplify sin 50 cos 5 – cos 50 sin 5. 2 Solution: sin (50 – 5) = 2</p><p>10. For all values of  for which the expression exists, write as a single trigonometric function of : sec  tan 2 1 sec csc  tan csc sin sec2   2sec tan  tan 2  1  sec  tan Solution: sin 2sec 2   2sec tan   2sin sec sec  tan  2 tan</p><p>11. Find tan (x + y) if sin x = -8/17 and cos y = 12/13 where the terminal side of x lies in quadrant III and the terminal side of y lies in quadrant IV. 8 5   15 12 21 Solution: tan x = 8/15; tan y = - 5/12 so tan(x + y) =  8  5  220 1   15  12 </p><p>12. In triangle ABC, mC = 90, BC = 7, and AB = 25. Find sin B. Solution: sin B = AC/AB = 24/25</p><p>13. In triangle PQR, mP = 60, PR = 12, and PQ = 8. Find QR. Solution: QR2 = 144 + 64 – 2(12)(8)(1/2), so QR = 4 7</p><p>14. If  <  < 3/2 and cos 2 = ¾, find sin . 2 Solution: 1 – 2 sin 2  = ¾, and sin  < 0 so sin  =  4</p><p>15. Which of the following statements is FALSE: A) sin ( + x) = – sin x B) tan (-x) = – tan x C) cos ( - ) = cos  cos  - sin  sin  D) sin ( + ) + sin ( - ) = 2 sin  cos  Solution: C</p><p>16. Find all values of x in the interval [0, 2] such that sin x cos x > 1. Solution: ½ sin 2x > 1 means sin 2x > 2 so no solution</p><p>17. For 0 < x < 2, find all x such that tan x  3  sec x . Solution: tan 2 x + 2 3 tan x + 3 = sec 2 x so 2 3 tan x + 3 = 1; tan x = -1/ 3 and x = 5/6, 11/6; only 11  /6 is a solution</p><p>18. If in right triangle XYZ, XY = 11, YZ = 60, and XZ > YZ, find the measure of X. Give your answer to the nearest degree. Solution: XZ must be the hypotenuse, so XZ = 61 and sin X = 60/61, so mX to the nearest degree is 80</p><p>19. To the nearest hundredth, give all solutions to tan2x – 5 = 0 on [0, 2]. Solution: tan x =  5 so x = 1.15, 1.99, 4.29, 5.13 20. Evaluate sin 870. Solution: sin 150 = ½ </p><p>21. For all values of x for which the expression exists, write in simplest form: ½cosxsecx. Solution: 1/2</p><p>22. If the range of y = 5 – 4 sec x is (-, a]  [b, ), find a + b. Solution: a = 1, b = 9 so a + b = 10</p><p>23. Using interval notation, give the range of y = 4 – 3 sin x. Solution: [1, 7]</p><p>24. How many complete cycles of the graph of y = 5 cos (x/3) occur on the interval x  [-12, 12]? Solution: period = 6, so 4</p><p> x    25. Write the following equation without a phase shift. y = 2cos  .  2  Solution: y = 2 (cos(x/2)cos(/2) - sin (x/2)sin(/2) so y = -2sin(x/2) </p><p>Mu Alpha Theta National Convention 2004 Hustle - Trigonometry</p><p># Answer # Answer 7 11  2 1 , 14 6 6 4 1 2 15 C 5 3 5 16 No solution 11 4 1 17 6</p><p>5 2 3 18 80 3 4 1 6 19 x  tan  5 3   1 7 5 20 2 2 2 1 8 21 3 2</p><p>9 2 22 10 2 10 2tan 23 [1, 7] 21 11 24 4 220 24  x  12 25 y  2sin  25  2 13 4 7</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us