Corona-Norco Unified School District

Corona-Norco Unified School District

<p> NAME Part A CORONA-NORCO UNIFIED SCHOOL DISTRICT ST Non PRE CAL HONORS 1 SEM FINAL EXAM REVIEW (B-4 & CH. 1-5) Calculator 2010 - 2011 DO NOT USE ANY TYPE OF CALCULATOR </p><p>  x x  0 1. Given f (x)   Find f (4)  6x x  0 f (x  2)  f (2) 2. If f (x)  x2  2x , find , x  0 x 3. State the domain and range of: y  x  3 graph for #3</p><p>1 4. Describe the transformation of the graph of f (x)  x for the graph of g(x)  x  4 3</p><p>5. Given f (x)  4  2x2 and g(x)  2  x , find ( f ° g)(x)</p><p>6. Given f (x)  1 3x and g(x)  x  2 , find (f-1- g - 1 )(1)</p><p>7. Write the given equation in the form y  a(x  h)2  k : y=2 x2 + 4 x - 3</p><p>8. Divide using long division: (9x3  6x2  8x  3)  (3x  2)</p><p>9. Use synthetic division to factor the polynomial x3  4x2  x  6 completely if 1 is a zero.</p><p>10. Write in standard form: 2i4  7i3</p><p>3  4i 11. Divide, then write your answer in standard form: 5  2i</p><p>1 12. Evaluate: log 4 16</p><p>13. Simplify: ln 3 e2 x</p><p>14. Convert to radians: 25˚.</p><p>7p 15. Convert to degrees: 12</p><p>3p 16. Find the point (x, y) on the unit circle that corresponds to the real number t = - 2</p><p>Revised July 10 17. Verify the identity: secx+ tan( - x )sin x = cos x</p><p>18. Factor and simplify: cos4x+ cos 2 x sin 2 x</p><p>19. Determine the period of f (x)  2cos3x   </p><p>2 20. Determine the amplitude of f (x)   sin4x 3</p><p>21. Describe the horizontal shift of the graph of g with respect to the graph of f. 骣 p f( x )= 4cos( x) and g( x )= 4cos琪 x + . 桫 4</p><p>7 22. Find the exact value of sin . 6</p><p>23. Find the exact value of cos π.</p><p> 2  arccos  24. Evaluate:    2 </p><p> 3  25. Evaluate: tanarccos   7 </p><p>26. Use the sum/difference formulas to find the exact value for cos 345˚. Use 345˚ = 300˚ + 45˚.</p><p>4 27. Use the double angle formulas to find the exact value of cos 2θ, given cos θ =  and tan θ > 0. 7</p><p>28. Determine the left-hand and right-hand behavior of the graph: f( x ) 3 x4  2 x 3  7 x 2  x  1</p><p>Revised July 10 NAME </p><p>Part CORONA-NORCO UNIFIED SCHOOL DISTRICT PRE CAL HONORS 1ST SEM FINAL EXAM REVIEW (B.4 & CH. 1-5) B 2010 - 2011 Calculator CALCULATORS ALLOWED </p><p>29. Find all the real zeros of the polynomial function: f (x)  x4  5x2  36</p><p>30. Find all the real zeros of the function: f( x )= x3 - 11 x 2 + 3 x + 3 . Use the window: x-min= – 5, x-max=15, y-min= –10, y-max=10. </p><p> x3  7x2 1 31. Find the slant asymptote: f (x)  x2 1</p><p>32. State the domain and range of f (x)  3  ex</p><p>16ln 5 33. Evaluate: 1 2ln 3</p><p>3e0.0721 52 34. Evaluate: 1 0.0721</p><p>35. State the domain of the function f (x)  3  ln(x 1)</p><p> x  2 36. Find the vertical asymptote(s): f (x)  x2  9</p><p>37. Solve for x: ln(x- 2) + ln(2 x - 3) = 2ln x</p><p>38. Solve for x: log(x- 3) - log( x - 7) = 1</p><p>39. Use a graphing utility to approximate any relative minimum or relative maximum of f (x)  2x2  x  3</p><p>1 40. An amount of $2000 is invested at a rate of 72 % compounded continuously. What is the balance at the end of 20 years?</p><p>41. The perimeter of a rectangle is 12 meters. Use a graphing utility to approximate the maximum area of the rectangle.</p><p>Revised July 10 42. Find all of the zeros of the function: f (x)  x4  25x2 144 </p><p>43. Determine the amount of money that should be invested at a rate of 8% compounded quarterly to produce a final balance of $20,000 in 10 years. </p><p>44. Solve for x: 2x1  52x6</p><p>45. Evaluate: cot 1.14</p><p>46. Find θ in the interval 0°  90 °  such that tan  1.2617</p><p>7 47. Find the reference angle for   . 3</p><p>48. A pilot of an airplane flying at 12,000 feet sights a water tower. The angle of depression to the base of the tower is 25˚. What is the length of the line of sight from the plane to the tower?</p><p>49. Find two values for θ, 0°  360 °  that satisfy cot   0.2679 .</p><p>50. Sketch the graph of : f( x )= 3sin(2 x ) from 0#q 2 p .</p><p>Revised July 10 CORONA-NORCO UNIFIED SCHOOL DISTRICT PRE CAL HONORS 1ST SEM FINAL EXAM REVIEW 1 (B.4 & CH. 1-5) 2008 - 2009 ANSWERS</p><p>1. 24 18. cos2 x 32. Domain = (, ) and 2. x + 2 2 Range = (, 3) 19. Domain = [3, ) 3 3. 33. 8.0542 Range = [0, ) 2 20. 34. 137.3653 4. Vertical shift 4 up; 3 35. 1,  p Vertical shrink (by 3) 21. horizontal shift left 4 36.  3 5. -2x2 + 8 x - 4 1 37. 6 22.  6. 1 2 67 38. x = 7. y=2( x + 1)2 - 5 23. – 1 9 3  39. Relative maximum at 8. 3x2  4x  24. 3x  2 4 (0.25,  2.88) 2 10 9. (x 1)(x  2)(x  3) 25. 40. $8963.38 3 10. 2  7i 41. 9 square meters 2  6 7 26 26. 42. 北3i , 4 i 11.  i 4 29 29 43. $9057.81 17 27.  12. -2 49 44. –4.0977 2 1 13.  ln x 28. Rises to the left, 45. 0.460 3 3 rises to the right 46.  51.6˚ 5 14. 29. –3, 3  36 47. 30. – 0.398 3 15. 105° 0.705 48.  28,394 feet 16. (0, 1) 10.693 49. 105˚ and 285˚ 17. Will vary. 31. y  x  7 50. </p><p>3</p><p>π 2π</p><p>–3</p><p>Revised July 10</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us