![Corona-Norco Unified School District](https://data.docslib.org/img/3a60ab92a6e30910dab9bd827208bcff-1.webp)
<p> NAME Part A CORONA-NORCO UNIFIED SCHOOL DISTRICT ST Non PRE CAL HONORS 1 SEM FINAL EXAM REVIEW (B-4 & CH. 1-5) Calculator 2010 - 2011 DO NOT USE ANY TYPE OF CALCULATOR </p><p> x x 0 1. Given f (x) Find f (4) 6x x 0 f (x 2) f (2) 2. If f (x) x2 2x , find , x 0 x 3. State the domain and range of: y x 3 graph for #3</p><p>1 4. Describe the transformation of the graph of f (x) x for the graph of g(x) x 4 3</p><p>5. Given f (x) 4 2x2 and g(x) 2 x , find ( f ° g)(x)</p><p>6. Given f (x) 1 3x and g(x) x 2 , find (f-1- g - 1 )(1)</p><p>7. Write the given equation in the form y a(x h)2 k : y=2 x2 + 4 x - 3</p><p>8. Divide using long division: (9x3 6x2 8x 3) (3x 2)</p><p>9. Use synthetic division to factor the polynomial x3 4x2 x 6 completely if 1 is a zero.</p><p>10. Write in standard form: 2i4 7i3</p><p>3 4i 11. Divide, then write your answer in standard form: 5 2i</p><p>1 12. Evaluate: log 4 16</p><p>13. Simplify: ln 3 e2 x</p><p>14. Convert to radians: 25˚.</p><p>7p 15. Convert to degrees: 12</p><p>3p 16. Find the point (x, y) on the unit circle that corresponds to the real number t = - 2</p><p>Revised July 10 17. Verify the identity: secx+ tan( - x )sin x = cos x</p><p>18. Factor and simplify: cos4x+ cos 2 x sin 2 x</p><p>19. Determine the period of f (x) 2cos3x </p><p>2 20. Determine the amplitude of f (x) sin4x 3</p><p>21. Describe the horizontal shift of the graph of g with respect to the graph of f. 骣 p f( x )= 4cos( x) and g( x )= 4cos琪 x + . 桫 4</p><p>7 22. Find the exact value of sin . 6</p><p>23. Find the exact value of cos π.</p><p> 2 arccos 24. Evaluate: 2 </p><p> 3 25. Evaluate: tanarccos 7 </p><p>26. Use the sum/difference formulas to find the exact value for cos 345˚. Use 345˚ = 300˚ + 45˚.</p><p>4 27. Use the double angle formulas to find the exact value of cos 2θ, given cos θ = and tan θ > 0. 7</p><p>28. Determine the left-hand and right-hand behavior of the graph: f( x ) 3 x4 2 x 3 7 x 2 x 1</p><p>Revised July 10 NAME </p><p>Part CORONA-NORCO UNIFIED SCHOOL DISTRICT PRE CAL HONORS 1ST SEM FINAL EXAM REVIEW (B.4 & CH. 1-5) B 2010 - 2011 Calculator CALCULATORS ALLOWED </p><p>29. Find all the real zeros of the polynomial function: f (x) x4 5x2 36</p><p>30. Find all the real zeros of the function: f( x )= x3 - 11 x 2 + 3 x + 3 . Use the window: x-min= – 5, x-max=15, y-min= –10, y-max=10. </p><p> x3 7x2 1 31. Find the slant asymptote: f (x) x2 1</p><p>32. State the domain and range of f (x) 3 ex</p><p>16ln 5 33. Evaluate: 1 2ln 3</p><p>3e0.0721 52 34. Evaluate: 1 0.0721</p><p>35. State the domain of the function f (x) 3 ln(x 1)</p><p> x 2 36. Find the vertical asymptote(s): f (x) x2 9</p><p>37. Solve for x: ln(x- 2) + ln(2 x - 3) = 2ln x</p><p>38. Solve for x: log(x- 3) - log( x - 7) = 1</p><p>39. Use a graphing utility to approximate any relative minimum or relative maximum of f (x) 2x2 x 3</p><p>1 40. An amount of $2000 is invested at a rate of 72 % compounded continuously. What is the balance at the end of 20 years?</p><p>41. The perimeter of a rectangle is 12 meters. Use a graphing utility to approximate the maximum area of the rectangle.</p><p>Revised July 10 42. Find all of the zeros of the function: f (x) x4 25x2 144 </p><p>43. Determine the amount of money that should be invested at a rate of 8% compounded quarterly to produce a final balance of $20,000 in 10 years. </p><p>44. Solve for x: 2x1 52x6</p><p>45. Evaluate: cot 1.14</p><p>46. Find θ in the interval 0° 90 ° such that tan 1.2617</p><p>7 47. Find the reference angle for . 3</p><p>48. A pilot of an airplane flying at 12,000 feet sights a water tower. The angle of depression to the base of the tower is 25˚. What is the length of the line of sight from the plane to the tower?</p><p>49. Find two values for θ, 0° 360 ° that satisfy cot 0.2679 .</p><p>50. Sketch the graph of : f( x )= 3sin(2 x ) from 0#q 2 p .</p><p>Revised July 10 CORONA-NORCO UNIFIED SCHOOL DISTRICT PRE CAL HONORS 1ST SEM FINAL EXAM REVIEW 1 (B.4 & CH. 1-5) 2008 - 2009 ANSWERS</p><p>1. 24 18. cos2 x 32. Domain = (, ) and 2. x + 2 2 Range = (, 3) 19. Domain = [3, ) 3 3. 33. 8.0542 Range = [0, ) 2 20. 34. 137.3653 4. Vertical shift 4 up; 3 35. 1, p Vertical shrink (by 3) 21. horizontal shift left 4 36. 3 5. -2x2 + 8 x - 4 1 37. 6 22. 6. 1 2 67 38. x = 7. y=2( x + 1)2 - 5 23. – 1 9 3 39. Relative maximum at 8. 3x2 4x 24. 3x 2 4 (0.25, 2.88) 2 10 9. (x 1)(x 2)(x 3) 25. 40. $8963.38 3 10. 2 7i 41. 9 square meters 2 6 7 26 26. 42. 北3i , 4 i 11. i 4 29 29 43. $9057.81 17 27. 12. -2 49 44. –4.0977 2 1 13. ln x 28. Rises to the left, 45. 0.460 3 3 rises to the right 46. 51.6˚ 5 14. 29. –3, 3 36 47. 30. – 0.398 3 15. 105° 0.705 48. 28,394 feet 16. (0, 1) 10.693 49. 105˚ and 285˚ 17. Will vary. 31. y x 7 50. </p><p>3</p><p>π 2π</p><p>–3</p><p>Revised July 10</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages5 Page
-
File Size-