A.S. El-Tabeia, M.A. Hegazya,*, A. H. Bedairb, M.A. Sadeqb

A.S. El-Tabeia, M.A. Hegazya,*, A. H. Bedairb, M.A. Sadeqb

<p> Supplementary Material</p><p>Synthesis and inhibition effect of novel Tri-cationic surfactant on</p><p> carbon steel corrosion in 0.5 M H2SO4 solution</p><p>A.S. El-Tabeia, M.A. Hegazy a, *, A. H. Bedairb, M.A. Sadeqb</p><p> aEgyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt</p><p> bFaculty of Science, Al-Azhar Univ., Chemistry Dept., Nasr City, Cairo, Egypt</p><p>*Corresponding author. Tel.: +20 1002653529; fax: +20 222747433.</p><p>E-mail address: [email protected] (M.A. Hegazy).</p><p>1 Caption of figures </p><p>Fig. 1: 1HNMR spectrum of N-((pyridin-2-ylamino)(pyridin-3-yl)methyl)pyridin-</p><p>2-amine.</p><p>Fig. 2: Mass spectrum of N-((pyridin-2-ylamino)(pyridin-3-yl)methyl)pyridin-2-</p><p> amine.</p><p>Fig. 3: FITR spectrum of 2,2'-(((1-dodecylprydinium bromide)-3-</p><p> yl)methylene)bis(azanediyl)bis(1-dodecylprydinium bromide). </p><p>Fig. 4: 1HNMR spectrum of 2,2'-(((1-dodecylprydinium bromide)-3-</p><p> yl)methylene)bis(azanediyl)bis(1-dodecylprydinium bromide</p><p>Fig. 5. Suggested equivalent circuit model for the studied system.</p><p>Fig. 6: Effect of temperature on the inhibition efficiency obtained by weight loss</p><p> method for carbon steel in 0.5 M H2SO4 in presence of different</p><p> concentrations of the synthesized Tri-cationic surfactant at various</p><p> temperatures.</p><p>Fig. 7: Langmuir isotherm adsorption model of the synthesized Tri-cationic</p><p> surfactant on the carbon steel surface in 0.5 M H2SO4 at different</p><p> temperatures.</p><p>Fig. 8: The relationship between (ln Kads and 1/T) for carbon steel in different</p><p> concentration of the synthesized Tri-cationic surfactant.</p><p>2 Fig. 9: Arrhenius plots (ln k vs. 1/T curves) for carbon steel dissolution in absence</p><p> and presence of different concentrations of the synthesized Tri-cationic</p><p> surfactant in 0.5 M H2SO4 solution.</p><p>Fig. 10: Relationship between ln k/T and the reciprocal of the absolute</p><p> temperature of carbon steel in different concentration of the synthesized</p><p>Tri-cationic surfactant. </p><p>3 4 Fig. 1</p><p>5 Fig. 2</p><p>6 Fig. 3</p><p>7 Fig. 4</p><p>8 Fig. 5</p><p>Fig. 6</p><p>9 Fig. 7</p><p>Fig. 8</p><p>10 Fig. 9</p><p>Fig. 10</p><p>11 Table 1</p><p>Activation parameters for carbon steel in 0.5 M H2SO4 in the absence and presence of different concentrations of Tri-cationic surfactant</p><p>* * Conc. of inhibitor Ea ∆H ads ∆S ads</p><p>M kJ mol-1 kJ mol-1 J mol-1 K-1 0.00 35.12 32.53 -76.64 1x10-5 28.68 26.09 -102.76 5x10-5 27.77 25.18 -110.27 1x10-4 25.40 22.81 -121.93 5x10-4 25.19 22.60 -129.33 1x10-3 19.59 17.00 -149.71</p><p>3. Results and discussion</p><p>The chemical structure confirmation of the synthesized Tri- cationic surfactant</p><p>N-((pyridine-2-ylamino)(pyridine-3-yl)methyl)pyridine-2-amine </p><p>FTIR spectra</p><p>12 FTIR spectrum of N-((pyridin-2-ylamino)(pyridin-3-yl)methyl)pyridin-2-amine showed the characteristic bands (cm-1) at 3248 (N-H), 3091, 3059, 3022 (py-H), 2925,</p><p>2853, (C-H aliphatic), 1605 (C=N).</p><p>1HNMR spectra</p><p>1 HNMR spectrum (DMSO – d6) spectrum (Supplementary material, Fig. 1) showed δ, ppm at : 5.81 (2H, 2C-H) and (24 py-H + 4N-H), 6.3825, 6.5751 (4H , 2d, J=5.04</p><p>Hz), 6.40695 (1H, d, J= 5.33 Hz), 6.4933 (2H, t, J= 7.65), 6.912 (1H, t, J=7.65 Hz),</p><p>7.18265 (2H, d, J= 7.65 Hz ), 7.3722 – 7.3034 (6H, m), 7.5433 (1H), 7.8055 (2H, d,</p><p>J= 8.4 Hz), 7.8444 (1H, d, J=4.55 Hz), 7.8857 (1H), 7.9166 (2H, d, J=5.35 Hz),8.3744</p><p>(1H, d, J=9.2 Hz), 8.4268, 8.7141 (2H, 2d, J=4.6 Hz), 8.49175 (1H, d, J=3.85), 8.6331</p><p>(1H, s).</p><p>Mass spectra </p><p>Mass spectrum of N-((pyridin-2-ylamino)(pyridin-3-yl)methyl)pyridin-2-amine</p><p>(Supplementary material, Fig. 2) showed a molecular ion peak M+2 at m/z 279 (66.64</p><p>%), 185 (55.82 %, M-C5H4N2), 171, (48.82 %, M-C5H4N2-CH2).</p><p>According to the data FTIR, 1HNMR, Mass spectroscopy, the product is a mixture of two compounds: N-((pyridin-2-lamino)(pyridin-3-yl)methyl)pyridin-2-amine (major) and N-((2-iminopyridin-1(2H)-yl)(pyridin-3-yl)methyl)pyridin-2-amine (trace).</p><p>2,2'-(((1-dodecylprydinium bromide)-3-yl)methylene)bis(azanediyl)bis(1-</p><p> dodecylprydinium bromide)</p><p>FTIR spectra</p><p>FTIR spectrum of 2,2'-(((1-dodecylprydinium bromide)-3- yl)methylene)bis(azanediyl)bis(1-dodecylprydinium bromide) (Supplementary</p><p>13 material, Fig. 3) showed characteristic bands (cm-1) at 2924, 2853, (C-H aliphatic),</p><p>1663.30 (C=N+).</p><p>1HNMR spectra</p><p>Comparing the 1HNMR spectrum of 2,2'-(((1-dodecylprydinium bromide)-3- yl)methylene)bis(azanediyl)bis(1-dodecylprydinium bromide) presented in</p><p>(Supplementary material, Fig. 4) and 1HNMR spectrum of N-((pyridin-2-ylamino)</p><p>(pyridin-3-yl)methyl)pyridin-2-amine presented in Fig. 2. Fig. 5 showed the same peaks in Fig. 2 in addition to other peaks δ, ppm at: 0.8150 (9H, CH3), 1.19 (m, 60H,</p><p>+ (CH2)30), 3.3218 (6H, NCH2).</p><p>The above data of FTIR and 1HNMR spectra confirmed the proposed structure of the synthesized Tri-cationic surfactant (2,2'-(((1-dodecylprydinium bromide)-3- yl)methylene)bis(azanediyl)bis(1-dodecylprydinium bromide)).</p><p>14</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us