Equations and Parameters for Glucose-Excited Neuron Model

Equations and Parameters for Glucose-Excited Neuron Model

<p>Supplementary Material Equations and Parameters for Glucose-excited neuron model</p><p>Table S1. Abbreviations Parameters Descriptions</p><p>CFX dependency of ion“X”flux on Vm (constant field equation)</p><p>Cm membrane capacitance (pF)</p><p>Ex equilibrium potential for ion“X” (mV) F Faraday’s constant, 96.4867 C/mmol Gx conductance (pA/mV)</p><p>IaX ion X component of current Ia (pA/pF) k,α, β, λ rate constants (/msec)</p><p>Xi intracellular amount of substance X (amol)</p><p>Xo extracellular amount of substance X (amol)</p><p>[X]i intracellular concentration of substance X (mM)</p><p>[X]o extracellular concentration of substance X (mM) Px convert factor (pA/pF/mM) for CFX p(X) probability of state X in a scheme of multiple state transitions</p><p>Table S2. Calculation of ionic currents and glucose metabolism Constant Field Equation</p><p>CFX=zXFVm/R/T * ([X]i-[X]o)*exp(-zXFVm/R/T)/(1- exp(-zXFVm/R/T))</p><p>INKb: background non-selective cation current pINKb=0.00396; INKb,Na=pINKb*CFNa; INKb,K=2.525*pINKb*CFK; INKb=INKb,Na+INKb,K; 2+ Il(Ca): Ca -activated background cation current</p><p>Pl(Ca) = 0.0075; 2+ p(open)=1/(1+(0.0012/[Ca ]i)^3); Il(Ca)Na = Pl(Ca)*CFNa*p(open); Il(Ca)K = Pl(Ca)*CFK*p(open); Il(Ca) = Il(Ca),Na + Il(Ca),K; + IKATP: ATP-sensitive K current kdd=0.01; ktt=0.05; ktd=0.026; gKATP=2.31; pOatp=(0.08*(1+2*[MgADP]/kdd)+0.89*([MgADP]/kdd)^2)/(1+[MgADP]/kdd)^2/(1+0.45*[MgADP]/ktd+ [ATP]/ktt); IKATP=gKATP*pOatp*(Vm-EK); + IKDr : delayed rectifier K current(Including IKr and IKs) pKDr=2.1; αp=1/(33.07*exp(-(Vm)/8)+0.937*exp(-(Vm)/100)); βp=1/(22.73*exp(Vm/100)); αq=1/800; βq=1/(1000*exp(-Vm/8)+100*exp(-Vm/100)); dp_KDr/dt=(αp*(1-p_KDr)-βp*p_KDr); dq_KDr/dt =(αq*(1-q_KDr)-βq*q_KDr); IKDr=pKDr*p_KDr*(0.6*q_KDr+0.4)* CFK; + Ito : transient outward K current</p><p>GKto=2.13; αm=1/(13.65*exp(-Vm/20)); βm=1/(6.2*exp(Vm/60)); αh=1/(570*exp(Vm/500)); βh=1/(7.765*exp(-Vm/9)+4.076*exp(-Vm/1000)); dm_Kto/dt =(αm*(1-m_Kto)-βm*m_Kto); dh_Kto/dt =(αh*(1-h_Kto)-βh*h_Kto); IKto=GKto*m_Kto*h_Kto*(Vm-EK); 2+ ICaL : voltage-dependent Ca current (Including ICaL and ICaT)</p><p>RCaLNa=0.0000185; RCaLK=0.000367; PCaL=48.9; %voltage-dependent activation gate dα=1/(0.9344*exp(-(Vm)/50)+0.09045*exp(-(Vm)/600)); dβ=1/(4.2678*exp((Vm)/12)+1.1265*exp((Vm)/30)); VpOpen=d_CaL^2; dd_CaL/dt =(dα*(1-d_CaL)-dβ*d_CaL); %calcium-dependent inactivation gate</p><p>SingleiCaL=0.0676*CFCa; Uα=0.0042*2; 2+ Uβ=0.1159*(-1.15*SingleiCaL*VpOpen+[Ca ]i)*2; %ultra-slow inactivation gate usα=1/(75000*exp(Vm/34)); usβ=1/(50000*exp(-Vm/19)+500*exp(-Vm/100)); RundownATP=1/(1+(1.4/[ATP]^3)); pO=(VpOpen*U_CaL*(0.4+0.6*fus))*RundownATP; dU_CaL/dt =(Uα*(1-U_CaL)-Uβ*U_CaL); dfus/dt =(usα*(1-fus)-usβ*fus);</p><p>ICaL,Na=RCaLNa*PCaL*pO*CFNa; ICaL,K=RCaLK*PCaL*pO*CFK; ICaL,Ca=PCaL*pO*CFCa; ICaL= ICaL,Na+ICaL,K+ICaL,Ca; 2+ IPMCA: plasma membrane Ca -ATPase</p><p>P_PMCA=1.56; K_PMCA=0.00014; 2+ 2+ IPMCA=P_PMCA*[Ca ]i ^2/([Ca ]i ^2+K_PMCA^2); IPMCA,Na= -IPMCA; IPMCA,Ca=2*IPMCA; + + INaK : Na /K pump current R=8.3143; Tem=310.15; Pii=1.9; Proton=0.0001; Kd_MgATP=0.6; Kd_Nao0=26.8; Kd_Nai0=5.0; Kd_Ko0=0.8; Kd_Ki0=18.8; delta_Nao=0.44; delta_Nai=-0.14; delta_Ko=0.23; delta_Ki=-0.14; k1_plus=1.253; k2_plus=0.139; k3_plus=6.96; k4_plus=0.52; k1_minus=0.139; k2_minus=0.0139; k3_minus=13900; k4_minus=0.348;</p><p>PNaK=350; fVm=F*Vm/(R*Tem); Kd_Nao=Kd_Nao0*exp(delta_Nao*fVm); Kd_Nai=Kd_Nai0*exp(delta_Nai*fVm); Kd_Ko=Kd_Ko0*exp(delta_Ko*fVm); Kd_Ki=Kd_Ki0*exp(delta_Ki*fVm); + Nai_=[Na ]i/Kd_Nai; + Naout_=[Na ]o/Kd_Nao; + Ki_=[K ]i /Kd_Ki; + Kout_=[K ]o /Kd_Ko; MgATP_=ATP(j)/Kd_MgATP; a1_plus_=(k1_plus*Nai_^3.0)/((1+Nai_)^3+(1+Ki_)^2-1); a2_plus_=k2_plus; a3_plus_=k3_plus*Kout_^2/((1+Naout_)^3+(1+Kout_)^2-1); a4_plus_=k4_plus*MgATP_/(1+MgATP_); a1_minus_=k1_minus*MgADP(j); a2_minus_=k2_minus*Naout_^3/((1+Naout_)^3+(1+Kout_)^2-1); a3_minus_=k3_minus*Pii*Proton/(1+MgATP_); a4_minus_=k4_minus*Ki_^2/((1+Nai_)^3+(1+Ki_)^2-1); denomi=(a1_minus_+a1_plus_)*a2_minus_*a3_minus_+a1_plus_*a2_plus_*(a3_plus_+a3_minus_) +a2_plus_*a3_plus_*(a4_plus_+a4_minus_)+(a2_plus_+a2_minus_)*a3_minus_*a4_minus_+ (a1_minus_+a1_plus_)*a3_plus_*a4_plus_+a1_minus_*(a3_plus_+a3_minus_)*a4_minus_+a1_plus_*(a2_plus _+a2_minus_)*a4_plus_+a1_minus_*a2_minus_*(a4_plus_+a4_minus_); numer=a1_plus_*a2_plus_*a3_plus_*a4_plus_-a1_minus_*a2_minus_*a3_minus_*a4_minus_; iglc=(0.4+0.6*exp(-[Glucose]/5.84)); vcyc=(numer/denomi); INaK=PNaK*vcyc*iglc; INaK,Na=3*INaK; INaK,K=-2*INaK; + 2+ INaCa: Na /Ca exchange current KdNao=87.5; KdCao=1.38; KdNai=20.75; KdCai=0.0184; k3=1; k4=1; AmpINaCa=204; RTF=R*Tem/F; + 2+ pE1Na=1/(1+(KdNai/[Na ]i)^3*(1+[Ca ]i /KdCai)); 2+ + pE1Ca=1/(1+(KdCai/[Ca ]i)*(1+([Na ]i /KdNai)^3)); + 2+ pE2Na=1/(1+(KdNao/[Na ]o)^3*(1+[Ca ]o /KdCao)); 2+ + pE2Ca=1/(1+(KdCao/[Ca ]o)*(1+([Na ]o /KdNao)^3)); k1=exp(0.32*Vm/RTF); k2=exp((0.32-1)*Vm/RTF); 2+ 2+ fCa=[Ca ]i /( [Ca ]i +0.004); α1=pE1Na*(fCa*0.002+(1-fCa)*0.0015); β1=fCa*0.0012+(1-fCa)*0.0000005; α2=fCa*0.00003+(1-fCa)*0.01; β2=fCa*0.09+(1-fCa)*0.0001; kf=k2*pE2Na+k4*pE2Ca; kb=k1*pE1Na+k3*pE1Ca; E2_tot=1-E1_tota-I1-I2; INaCa=AmpINaCa*(k1*pE1Na*E1_tota-k2*pE2Na*E2_tot); INaCa,Na=3*INaCa; INaCa,Ca=-2*INaCa; dE1_tota/dt =(E2_tot*kf+I1*β1+I2*β2-E1_tota*(kb+α1+α2)); dI1/dt =(E1_tota*α1-I1*β1); dI2/dt =(E1_tota*α2-I2*β2); 2+ 2+ ER calcium dynamics(IERCA:Ca uptake by SERCA, Irel:Ca release from ER)</p><p>PCaER=0.096; KCarp=0.0005; Pleak=0.46; 2+ 2+ IERCA =PCaER*[Ca ]i ^2/([Ca ]i ^2+KCarp^2); 2+ Irel =Pleak*( - [Ca ]i); Glycolysis And Oxidative phospholylation(ATP, MgADP, Re) Nt=10; totalATP=5; KmATP=0.5; hgl=2.5; Kg=13; Pop=0.0005; Kop=0.02; KRe=0.000126; Kfa=0.0000063; Stoichi=2.5; Rvol=2.5; kATPCa=0.187; kATP=0.000062; kADPf=0.0002; kADPb=0.00002; fGlu=[ATP]/(KmATP+[ATP])*[Glucose]^hgl/(Kg^hgl+[Glucose]^hgl); JOP=Pop*[Re]*[MgADP]^2/([MgADP]^2+Kop^2); ADPb=totalATP-[ATP]-[MgADP]/0.55; 2+ d[ATP]/dt=(JOP-((INaK+IPMCA/F+Jserca/2)/voli-(kATP+kATPCa*[Ca ]i)*[ATP]); 2+ d[MgADP]/dt=(-0.55*(JOP-((INaK+IPMCA)/F+Jserca/2)/voli-(kATP+kATPCa*[Ca ]i)*[ATP])+0.55*kADPb*ADPb- kADPf*[MgADP]); d[Re]/dt=((KRe*fGlu+Kfa)*(Nt-[Re])-JOP*Rvol/Stoichi);</p><p>Table S3. Initial values of related variables Variables Initial values</p><p>Vm -69.8663703359279 + [Na ]i 5.80400 + [K ]i 126.776 2+ [Ca ]i 0.000306139 [ATP] 3.5 [MgADP] 0.6 [Re] 0.641950 d_CaL 0.0305677246684658</p><p>U_CaL 0.97136209316892 fus 0.0234849 p_KDr 5.50634588785556E-05 q_KDr 0.999871116432097 m_Kto 0.00429094440645993 h_Kto 0.973579888263364 E1_tota 0.0995446568706361 I1 0.347091674662305 I2 0.552654630410071</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us