C Brownian Motion by Integration of Gaussian White Noise

C Brownian Motion by Integration of Gaussian White Noise

<p> ------PROGRAM BRNMTN</p><p>C BROWNIAN MOTION BY INTEGRATION OF GAUSSIAN WHITE NOISE. C THIS PROGRAM REQUIRES A GAUSSIAN RANDOM NUMBER GENERATOR SUCH AS C GASDEV DESCRIBED IN PRESS. C YOU WILL BE PROMPTED FOR THE INPUT DATA, WHICH CONSISTS OF THE C NUMBER OF GAUSSIAN WHITE NOISE POINTS (NOT TO EXCEED 2500) AND C THE NUMBER OF BROWNIAN MOTION POINTS TO BE CALCULATED (NOT TO C EXCEED 500). THE NUMBER OF GAUSSIAN WHITE NOISE POINTS SHOULD C EXCEED THE NUMBER OF BROWNIAN MOTION POINTS BY AT LEAST A FACTOR C OF FIVE. C THE PROGRAM THEN CALCULATES THE BROWNIAN MOTION TRAJECTORY AND C PUTS THESE INTO A FILE LABELED 'OUTPUT.' THESE POINTS MAY BE C EXPORTED TO YOUR FAVORITE GRAPHICS PROGRAM. C IMPLICIT REAL*8(A-H,O-Z) DIMENSION Y(2500),Z(500) WRITE(*,20) 20 FORMAT(1X,'SELECT THE NUMBER OF GAUSSIAN WHITE NOISE POINTS AND'/, X' BROWNIAN MOTION POINTS. ',\) READ(*,*) N,NBM OPEN(3,FILE='OUTPUT', STATUS='NEW') C GENERATE GAUSSIAN WHITE NOISE POINTS IDUM = -1 DO 30 I=1,N 30 Y(I) = 0.0 DO 35 I=1,NBM 35 Z(I) = 0.0 DO 40 I=1,N 40 Y(I) = GASDEV(IDUM) C GENERATE BROWNIAN MOTION POINTS M = N/NBM MIN = 2 MAX = M DO 70 J=1,NBM DO 50 I=MIN,MAX Y(I) = Y(I-1)+Y(I) 50 Z(J) = Y(I) C START NEW SUMMATION WITH ORIGINAL Y(I-1) MIN = MIN+M MAX = MAX+M 70 CONTINUE C BROWNIAN MOTION TRAJECTORY BY SUMMATION OF THE Z POINTS ZSUM = 0.0 DO 90 I=1,NBM ZSUM = ZSUM+Z(I) WRITE(3,80) ZSUM 80 FORMAT(E14.5) 90 CONTINUE CLOSE(3) WRITE (*,100) 100 FORMAT(1X,'PRESS RETURN TO TERMINATE.') PAUSE END ------PROGRAM BRSLTR</p><p>C SOLUTION OF THE BRUSSELATOR BY THE RUNGE-KUTTA METHOD C THE EQUATIONS ARE C DX/DT = A-(B+1)*X+X^2*Y C DY/DT = B*X-X^2*Y C WHERE A,B,C ARE PARAMETERS. THE SOLUTIONS ARE ADVANCED BY A C TIME INCREMENT DT. THE PRINTOUTS OF X AND Y ARE CONTROLLED BY C THE NUMBER OF TIME INCREMENTS (NUM) BETWEEN WRITES TO THE OUTPUT C FILE. THIS IS SET BY THE VALUE OF M, WHERE M = 1/NUM*DT. C TOO LARGE A TIME INCREMENT WILL CAUSE ERRATIC BEHAVIOR OF THE C PROGRAM. AN INITIAL VALUE OF 0.01 IS RECOMMENDED. C WHEN ENTERING VALUES OF PARAMETERS, UPON SEEING THE SCREEN PROMPT, C YOU MUST LEAVE A SPACE BETWEEN NUMBERS. C THE OUTPUT FILES ARE LABELED 'XRESULT' AND 'YRESULT.' THESE C RESULTS MAY BE EXPORTED TO YOUR FAVORITE GRAPHICS PROGRAM. C IMPLICIT REAL*8(A-H,O-Z) F1(X,Y,A,B) = A-(B+1.0)*X+X*X*Y F2(X,Y,B) = B*X-X*X*Y OPEN(2,FILE='XRESULT', STATUS='NEW') OPEN(3,FILE='YRESULT', STATUS='NEW') WRITE(*,10) 10 FORMAT(1X,'SELECT THE NUMBER OF POINTS TO BE CALCULATED, THE VALUE XS OF A,B, AND THE',/1X,'INITIAL VALUES OF X AND Y. ',\) READ(*,*) N,A,B,X,Y WRITE(*,25) 25 FORMAT(1X,'SELECT THE TIME INCREMENT AND THE VALUE OF M. ',\) READ(*,*) DT, M WRITE(2,40) X WRITE(3,40) Y C NUM IS A COUNTER FOR TIME INTERVALS BETWEEN OUTPUT WRITES NUM = 0 DO 50 I=1,N AK1 = F1(X,Y,A,B)*DT AM1 = F2(X,Y,B)*DT X1 = X+AK1/2.0 Y1 = Y+AM1/2.0 AK2 = F1(X1,Y1,A,B)*DT AM2 = F2(X1,Y1,B)*DT X2 = X+AK2/2.0 Y2 = Y+AM2/2.0 AK3 = F1(X2,Y2,A,B)*DT AM3 = F2(X2,Y2,B)*DT X3 = X+AK3 Y3 = Y+AM3 AK4 = F1(X3,Y3,A,B)*DT AM4 = F2(X3,Y3,B)*DT X1 = X+(AK1+2.0*AK2+2.0*AK3+AK4)/6.0 Y1 = Y+(AM1+2.0*AM2+2.0*AM3+AM4)/6.0 X = X1 Y = Y1 IF(NUM.EQ.0) GO TO 35 IF(NUM*M*DT.EQ.1) GO TO 30 GO TO 45 30 NUM = 0 35 WRITE(2,40) X WRITE(3,40) Y 40 FORMAT(E14.5) 45 NUM = NUM + 1 50 CONTINUE CLOSE(2) CLOSE(3) WRITE(*,60) 60 FORMAT(1X,'PRESS RETURN TO TERMINATE') PAUSE END ------PROGRAM CELLAUT</p><p>C CELLULAR AUTOMATA C THIS PROGRAM CALCULATES ONE-DIMENSIONAL CELLULAR AUTO- C MATA USING THE NEIGHBOR-THREE RULES OF [WOLFRAM, 1983]. C THE INPUT CONSISTS OF THE NUMBER OF SITES C (CELLS) N IN THE CA PLUS 2 TO TAKE INTO ACCOUNT THE ENDS FOR C CYCLIC BOUNDARY CONDITIONS, THE NUMBER OF TIME VALUES (INCLUDING C TIME ZERO) NT, AND THE ORIGINAL CONFIGURATION IX(NT,N) COMPRISED C OF 1'S AND 0'S. THE VALUES OF N, NT, AND THE INITIAL C CONFIGURATION MUST BE ENTERED IN A FILE LABELED 'INPUT.' C SEE THE PROGRAM FOR THE FORMAT OF THE INPUT DATA. C THE CA RULES IN THE PROGRAM MUST BE CHANGED FOR EACH NEW CA AND C THE PROGRAM MUST BE RECOMPILED FOR EACH NEW CA. C EACH TIME N AND OR NT ARE CHANGED, THE PROGRAM MUST BE MODIFIED C AND RECOMPILED. THESE CHANGES ARE INDICATED IN THE PROGRAM C BY *****. C THE VALUE OF N MUST NOT EXCEED 100 AND THE VALUE OF NT MUST NOT C EXCEED 500. C THE CA APPEAR DIRECTLY ON THE SCREEN. C IMPLICIT REAL*8(A-H,O-V), INTEGER(I-N) DIMENSION IX(500,100) OPEN(2, FILE='INPUT',STATUS='OLD') C READ IN THE NUMBER OF CELLS (+2) AND THE NUMBER OF TIME STEPS READ(2,*) N,NT C READ IN THE INITIAL CONFIGURATION. READ(2,*) (IX(1,J), J=1,N) DO 120 I=1,NT-1 DO 118 J=2,N-1 C*****THE CA RULES MUST BE SPECIFIED BELOW. THE NEIGHBORHOODS ARE C*****LABELED. IF DESIRED, THE CA NUMBER CAN BE RECORDED IN THE C*****NEXT STATEMENT. C CELLULAR AUTOMATA RULES FOR CA 126 IF(IX(I,J).EQ.1) GO TO 108 C NEIGHBORHOOD 101 IF(IX(I,J-1).EQ.1.AND.IX(I,J+1).EQ.1) IX(I+1,J) = 1 C NEIGHBORHOOD 100 IF(IX(I,J-1).EQ.1.AND.IX(I,J+1).EQ.0) IX(I+1,J) = 1 C NEIGHBORHOOD 001 IF(IX(I,J-1).EQ.0.AND.IX(I,J+1).EQ.1) IX(I+1,J) = 1 C NEIGHBORHOOD 000 IF(IX(I,J-1).EQ.0.AND.IX(I,J+1).EQ.0) IX(I+1,J) = 0 GO TO 118 C NEIGHBORHOOD 111 108 IF(IX(I,J-1).EQ.1.AND.IX(I,J+1).EQ.1) IX(I+1,J) = 0 C NEIGHBORHOOD 110 IF(IX(I,J-1).EQ.1.AND.IX(I,J+1).EQ.0) IX(I+1,J) = 1 C NEIGHBORHOOD 011 IF(IX(I,J-1).EQ.0.AND.IX(I,J+1).EQ.1) IX(I+1,J) = 1 C NEIGHBORHOOD 010 IF(IX(I,J-1).EQ.0.AND.IX(I,J+1).EQ.0) IX(I+1,J) = 1 118 CONTINUE IX(I+1,1) = IX(I+1,N-1) IX(I+1,N) = IX(I+1,2) 120 CONTINUE DO 125 I=1,NT DO 127 J=1,N IF(IX(I,J).EQ.0) GO TO 128 WRITE(*,130) 130 FORMAT(''\) GOTO 127 128 WRITE(*,129) 129 FORMAT(' '\) 127 CONTINUE WRITE(*,126) 126 FORMAT(' ') 125 CONTINUE CLOSE(2) C SCREEN REMARK WRITE(*,160) 160 FORMAT(1X,'PRESS RETURN TO TERMINATE') PAUSE END ------PROGRAM GSSWTN</p><p>C GAUSSIAN WHITE NOISE C THIS PROGRAM CALCULATES GAUSSIAN WHITE NOISE. C THIS PROGRAM REQUIRES A GAUSSIAN RANDOM NUMBER GENERATOR SUCH AS C GASDEV DESCRIBED IN PRESS. C INPUT CONSISTS OF THE NUMBER OF WHITE NOISE POINTS (N). C THERE IS NO RESTRICTION ON THE NUMBER OF POINTS. C THE OUTPUT IS IN A FILE NAMED 'RESULT.' C C IMPLICIT REAL*8(A-H,O-Z) WRITE(*,20) 20 FORMAT(1X,'SELECT THE NUMBER OF GAUSSIAN WHITE NOISE POINTS. ',\) READ(*,*) N OPEN(3,FILE='RESULT',STATUS='NEW') IDUM = -1 DO 60 I=1,N X = GASDEV(IDUM) WRITE(3,50) X 50 FORMAT(E14.5) 60 CONTINUE CLOSE(3) WRITE(*,70) 70 FORMAT(1X,'PRESS RETURN TO TERMINATE.') PAUSE END ------PROGRAM ISING</p><p>C TWO-DIMENSIONAL ISING LATTICE BY MONTE CARLO METHOD C THIS FORTRAN PROGRAM CALCULATES THE SHORT-RANGE ORDER C PARAMETER F1 (FRACTION OF NEAREST-NEIGHBOR SITES OCCUPIED C BY AN ANTIPARALLEL PAIR OF SPINS) AND E/NJ. INPUT CONSISTS OF THE C LATTICE DIMENSION N (WHERE TOTAL NUMBER OF SITES IS N * N), C THE REDUCED COUPLING CONSTANT R, AND THE NUMBER OF ITERATIONS C NIT. THE COUNTER NCOUNT RECORDS THE NUMBER OF ITERATIONS. C EACH ITERATION CONSISTS OF THE METROPOLIS MC METHOD APPLIED C SUCCESSIVELY TO EACH OF THE NXN SITES. THE TOTAL NUMBER OF C CONFIGURATIONS USED IN THE CALCULATION OF F1 IS N * N * NIT. C A RANDOM NUMBER GENERATOR, SUCH AS RAN2 FROM PRESS, C MUST BE SUPPLIED. C THE OUTPUT ON THE SCREEN IS THE ORDER PARAMETER. IN A FILE C LABELED 'RESULT' CAN BE FOUND VALUES FOR E/NJ AFTER EACH C ITERATION. C AT THE END OF THE CALCULATION, YOU WILL BE PROMPTED AS TO WHETHER C YOU WISH TO DO ANOTHER CALCULATION. IF YOU DO, THE RESULTS FOR C EACH CALCULATION WILL BE SAVED IN THE 'RESULT' FILE. C IMPLICIT REAL*8(A-H,O-Z) CHARACTER*3 ANS DIMENSION IA(50,50),SUMF1(1000) OPEN(3,FILE='RESULT',STATUS='NEW') C DIMENSION OF LATTICES IS N; REDUCED COUPLING CONSTANT R=J/KT 1 WRITE(*,5) 5 FORMAT(1X,'PLEASE TYPE IN THE LATTICE DIMENSION, J/KT, AND NUMBER X OF ITERATIONS; LEAVE A'/' SPACE BETWEEN NUMBERS. ',\) READ(*,*) N,R,NIT WRITE(*,6) 6 FORMAT(1X,'CALCULATION IS IN PROGRESS.') NCOUNT = 0 DO 200 IJ=1,NIT NCOUNT = NCOUNT+1 IF(NCOUNT.EQ.1) GO TO 7 F1 = F1*N*N*(NCOUNT-1) GO TO 12 7 F1 = 0.0 IDUM = -1 C SET ALL SPINS EQUAL TO 1 TO BEGIN 9 DO 10 I=1,N DO 10 J=1,N 10 IA(I,J) = 1 12 K = 0 C COUNT NUMBER OF +1,+1 NEIGHBOR PAIRS 15 NPP = 0 DO 20 J=1,N IF(IA(1,J).NE.IA(N,J).OR.IA(1,J).EQ.0) GO TO 20 NPP = NPP+1 20 CONTINUE DO 30 I=1,N IF(IA(I,1).NE.IA(I,N).OR.IA(I,1).EQ.0) GO TO 30 NPP = NPP+1 30 CONTINUE DO 40 I=1,N DO 40 J=1,N-1 IF(IA(I,J).NE.IA(I,J+1).OR.IA(I,J).EQ.0) GO TO 40 NPP = NPP+1 40 CONTINUE DO 50 I=1,N-1 DO 50 J=1,N IF(IA(I,J).NE.IA(I+1,J).OR.IA(I,J).EQ.0) GO TO 50 NPP = NPP+1 50 CONTINUE C COUNT NUMBER OF +1 SPINS NP = 0 DO 60 I=1,N DO 60 J=1,N IF(IA(I,J).EQ.0) GO TO 60 NP = NP+1 60 CONTINUE SS = 4.0*NPP-8.0*NP+2.0*N*N IF(K.GT.0) GO TO 65 E1 = -R*SS GO TO 66 65 E2 = -R*SS DELE = E2-E1 GO TO 85 C REVERSE SPIN AT SITE I,J 66 L = 0 67 L = L+1 M = 0 68 M = M+1 IF(IA(L,M)) 70,70,80 70 IA(L,M) = 1 GO TO 82 80 IA(L,M) = 0 82 K = K+1 NP1 = NP NPP1 = NPP GO TO 15 85 IF(DELE) 90,90,100 90 E1 = E2 GO TO 140 C DELTA E IS GT ZERO; CHECK BOLTZMANN DISTRIBUTION 100 IDUM = IDUM-1 RN = RAN2(IDUM) BOL = DEXP(-DELE) IF(RN.LT.BOL) GO TO 130 C NON-BOLTZMANN DISTRIBUTION---RESET TO OLD VALUES IF(IA(L,M)) 110,110,120 110 IA(L,M) = 1 NP = NP1 NPP = NPP1 GO TO 140 120 IA(L,M) = 0 NP = NP1 NPP = NPP1 GO TO 140 130 E1 = E2 140 F1 = (4.0*NP-2.0*NPP)/(2.0*N*N)+F1 NP1 = NP NPP1 = NPP IF(M.NE.N) GO TO 68 IF(L.NE.N) GO TO 67 F1 = F1/(N*N*NCOUNT) SUMF1(IJ) = -2.0*(1.0 - 2.0*F1) 200 CONTINUE WRITE(3,210) (SUMF1(IJ), IJ=1,NIT) 210 FORMAT(E12.5) WRITE(*,150) F1 150 FORMAT(1X,'THE ORDER PARAMETER IS',E12.5) WRITE(*,155) 155 FORMAT(1X,'DO YOU WISH TO CONTINUE WITH A NEW CONFIGURATION? (yes XOR no) ',\) READ(*,157) ANS 157 FORMAT(A3) IF(ANS.EQ.'yes') GO TO 1 CLOSE(3) WRITE(*,160) 160 FORMAT(1X,'PRESS RETURN TO TERMINATE') PAUSE END ------PROGRAM LJMDFOR1D</p><p>C THIS PROGRAM PERFORMS AN MD SIMULATION ON A ONE-DIMENSIONAL C LENNARD-JONES FLUID MODEL. THE PROGRAM USES THE RANDOM NUMBER C GENERATOR RAN2 FROM PRESS. CARE SHOULD BE TAKEN TO CHANGE THE C FUNCTION AND ALL THE REAL VARIABLES IN IT INTO DOUBLE PRECISION. C THE VARIABLES HAVE EASY TO UNDERSTAND C NAMES. REDUCED UNITS HAVE BEEN USED. THE NTH POSITION DERIVATIVE C HAS BEEN MULTIPLIED BY (DELTA)**N/N!. NO CUTOFF CORRECTIONS HAVE C BEEN APPLIED. IMPLICIT REAL*8(A-H, O-Z) COMMON /X0F/ X0(300), F(300) COMMON /X123/ X1(300), X2(300), X3(300) COMMON /NSIDEL/ N, SIDEL, SIDEL2 COMMON /SUMS/ V2SUM, ENSUM, VISUM COMMON /ENERVIR/ ENERGY, VIRIAL OPEN( UNIT=6, FILE='MDOUT.OUT') C GIVE THE VALUES OF THE INPUT PARAMETERS. NEQUI=5000 NCALC=20 NPROD=15000 N=300 AN=N DELTA=0.005D0 DELTA2=DELTA*DELTA DELTA3=0.5D0*DELTA2 TEMP=2.10D0 DENSITY=0.4D0 SIDEL=AN/DENSITY SIDEL2=0.5D0*SIDEL DELTAX=SIDEL/(AN + 1.0D0) DO 10 I=1, N X2(I)=0.0D0 X3(I)=0.0D0 10 F(I)=0.0D0 V2SUM=0.0D0 ENSUM=0.0D0 VISUM=0.0D0 X0(1)=DELTAX C ASSIGN INITIAL POSITIONS DO 20 I=2, N 20 X0(I)=X0(I-1) + DELTAX SUMV=0.0D0 WRITE(*,25) 25 FORMAT(1X,'PLEASE TYPE IN RANDOM NUMBER SEED INTEGER. '\) C ASSIGN RANDOM VELOCITIES READ(*,*)IDUM DO 30 I=1,N XX = RAN2(IDUM) X1(I) = 2.0D0*XX-1.0D0 30 SUMV=SUMV + X1(I) SUMV2=0.0D0 DO 40 I=1, N X1(I) = X1(I) - SUMV/AN 40 SUMV2 = SUMV2 + X1(I)*X1(I) SCALE=DSQRT(AN*DELTA2*TEMP/SUMV2) C SCALE THE VELOCITIES TO GET THE GIVEN REDUCED TEMPERATURE DO 50 I=1, N 50 X1(I) = X1(I)*SCALE C START THE EQUILIBRATION PHASE CALL FORCEETC DO 60 I=1, N 60 X2(I) =F(I)*DELTA3 DO 70 NST=1, NEQUI CALL PREDCOR(DELTA3) IF(MOD(NST,NCALC).EQ.0)THEN CALL CALC(DENSITY, SQV, DELTA2, NCALC, NST) SCALE=DSQRT(AN*DELTA2*TEMP/SQV) DO 80 I=1, N 80 X1(I) = X1(I)*SCALE END IF 70 CONTINUE C START THE PRODUCTION RUN V2SUM=0.0D0 ENSUM=0.0D0 VISUM=0.0D0 DO 90 NST=1, NPROD CALL PREDCOR(DELTA3) IF(MOD(NST,NCALC).EQ.0)CALL CALC(DENSITY, SQV, 1 DELTA2, NCALC, NST) 90 CONTINUE STOP END</p><p>SUBROUTINE FORCEETC C THIS SUBROUTINE CALCULATES THE FORCES, POTENTIAL ENERGIES AND THE C VIRIAL FOR A GIVEN CONFIGURATION. IMPLICIT REAL*8(A-H, O-Z) COMMON /X0F/ X0(300), F(300) COMMON /NSIDEL/ N, SIDEL,SIDEL2 COMMON /ENERVIR/ ENERGY, VIRIAL ENERGY=0.0D0 VIRIAL=0.0D0 DO 10 I=1, N-1 R=X0(I)-X0(I+1) IF(R.GT.SIDEL2)R=R-SIDEL IF(R.LT.-SIDEL2)R=R+SIDEL R2=R*R R6=R2*R2*R2 R61=1.0D0/R6 EN=4.0D0*R61*(R61-1.0D0) FORCE=24.0D0*R61*(2.0D0*R61-1.0D0)/R F(I)=F(I)+FORCE F(I+1)=F(I+1)-FORCE ENERGY=ENERGY+EN 10 VIRIAL=VIRIAL+FORCE*R R=X0(N)-X0(1) IF(R.GT.SIDEL2)R=R-SIDEL IF(R.LT.-SIDEL2)R=R+SIDEL R2=R*R R6=R2*R2*R2 R61=1.0D0/R6 EN=4.0D0*R61*(R61-1.0D0) FORCE=24.0D0*R61*(2.0D0*R61-1.0D0)/R F(N)=F(N)+FORCE F(1)=F(1)-FORCE ENERGY=ENERGY+EN VIRIAL=VIRIAL+FORCE*R RETURN END</p><p>SUBROUTINE PREDCOR(DELTA3) C THIS SUBROUTINE APPLIES THE GEAR'S THIRD ORDER PREDICTOR CORRECTOR C ALGORITHM. IMPLICIT REAL*8(A-H, O-Z) COMMON /X0F/ X0(300), F(300) COMMON /X123/ X1(300), X2(300), X3(300) COMMON /NSIDEL/ N, SIDEL, SIDEL2 DO 10 I=1, N X0(I)=X0(I)+X1(I)+X2(I)+X3(I) X1(I)=X1(I)+2.0D0*X2(I)+3.0D0*X3(I) X2(I)=X2(I)+3.0D0*X3(I) 10 F(I)=0.0D0 CALL FORCEETC DO 20 I=1, N DIFF=DELTA3*F(I)-X2(I) X0(I)=X0(I)+DIFF/6.0D0 X1(I)=X1(I)+5.0D0*DIFF/6.0D0 X2(I)=X2(I)+DIFF X3(I)=X3(I)+DIFF/3.0D0 IF(X0(I).GT.SIDEL)X0(I)=X0(I)-SIDEL 20 IF(X0(I).LT.0.0D0)X0(I)=X0(I)+SIDEL RETURN END</p><p>SUBROUTINE CALC(DENSITY, SQV, DELTA2, NCALC, NST) C THIS SUBROUTINE CALCULATES THE PHYSICAL PROPERTIES USING THEIR C DEFINITIONS, AS NEEDED. IMPLICIT REAL*8(A-H, O-Z) COMMON /X123/ X1(300), X2(300), X3(300) COMMON /NSIDEL/ N, SIDEL, SIDEL2 COMMON /SUMS/ V2SUM, ENSUM, VISUM COMMON /ENERVIR/ ENERGY, VIRIAL SQV=0.0D0 AN=N DO 10 I=1, N 10 SQV=SQV+X1(I)*X1(I) V2SUM=V2SUM+SQV ENSUM=ENSUM+ENERGY VISUM=VISUM+VIRIAL TEMPCALC=SQV/(AN*DELTA2) PRES=DENSITY*(TEMPCALC+VIRIAL/AN) EPOT=ENERGY/AN ETOT=0.5D0*TEMPCALC +EPOT POINTS=DFLOAT(NST/NCALC) TAVE=V2SUM/(AN*POINTS*DELTA2) EAVE=ENSUM/(AN*POINTS) PAVE=DENSITY*(TAVE+VISUM/(AN*POINTS)) WRITE(6,*)'NST,TEMPCALC,TAVE,EPOT,EAVE,PRES,PAVE,ETOT' WRITE(6,*)NST,TEMPCALC,TAVE,EPOT,EAVE,PRES,PAVE,ETOT RETURN END</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us