<p>Table 2 : Solvents and conducted research on electrospun silk fibroin</p><p>Polymers Solvent Conducted Ref. research Raw silk 98 % FA 50% aq methanol for [56] fibres crystallization: cell studies Fibroin silk 98-100 % Effect of spinning [57], fibres FA parameters on fibre [49] morphology and diameter B.mori/ 98 % FA Post-spin methanol [58] wool treatment displayed keratose high performance for removing and recovering heavy metals ion from water Thai/ 85 % FA Silk FB fibre mats as [37] Chinese/ possible bone Japanese scaffolds silkworm B.mori silk HFIP Effects of vapour: [59] yarn H2O, methanol, ethanol and propanol</p><p>B.mori/ H2O Two- fluid e-spinning [60] PEO produced core/shell fibres Silk and Silk Biomaterial scaffolds [48] Silk/PEO solutions blend in HFIP, PEO solution</p><p> in H2O Sericin 0.5 M Sericin and collagen [61] powder of acetic proteins: first B. mori acid, membrane for wound and membra dressing collagen nes cross- linked with GTA B.mori silk Silk Freeze-drying [62] fibre solutions method: Heparin- in 9.3M loaded scaffolds and LiBr, PEO a potential vascular grafts Figure 2: Diagram of a typical electrospinning apparatus [9]</p><p>Figure 6: SEM image of electrospun silk fibroin nanofibres [54]</p><p>REFERENCES [1] Kaplan, D.L.; Mello, S.M.; Arcidiacono, S.; Fossey, S.; Senecal, K.W.M. (1998): Protein Based Materials, Birkhauser, pp103–131, Boston [2] Wong, P.; Foo, C.; Kaplan, D.L. (2002): Genetic engineering of fibrous proteins: spider dragline silk and collagen, Advanced Drug Delivery Reviews, (54,8), pp1131–1143 [3] Perez-Rigueiro, J.; Viney, C.; Llorca, J.; Elices, M. (2000): Mechanical properties of single-brin silkworm silk, Journal of Applied Polymer Science, (75), pp1270–1277 [4] Mhuka, V.; Dube, S.; Nindi, M.M.(2013): Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial, Int. J. Of Biological Macromolecules, (52), pp305-311</p><p>[5] Ayutsede, J. E. (2005): Regeneration of Bombyx Mori Silk Nanofibers and Nanocomposite Fibrils bythe Electrospinning Process, PhD Thesis, pp7, Drexel University [6] Nogueria, G.M.; Rodas, A.C.D.; Leite, C.A.P.; Giles, C.; Higa, O.Z.; Polakiewicz, B.; Beppu, M.M. (2010): Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material, Biosource Technology, (101), pp8446-8451 [7] Bunsell, A.R.; Schwartz, P.(2009): Handbook of Tensile Properties of Textile and Technical Fibres, pp9, Woodhead Publishing in Textiles, No.91, ISBN 978-1-84569-387-9 [8] Schiffman, J. D.; Schauer, C. L. (2008): A review: Electrospinning of biopolymer nanofibers and their applications, Polymer Reviews, (48:2), pp317-352 [9] Karaca, E.(2014): Workshop in Nano fibre production by Electrospinning technique, ITA , Istanbul, 03.02.2014 [10] Schiffman, J. D.; Schauer, C. L. (2007)-a: Cross-linking chitosan nanofibers, Biomacromolecules (8), pp594–601 [11] Schiffman, J. D.; Schauer, C. L. (2007) -b: One-step electrospinning of cross-linked chitosan fibers, Biomacromolecules, (8), pp2665–2667 [12] Kim, K. W.; Lee, K. H.; Khil, M. S.; Ho, Y. S.; Kim, H. Y. (2004): The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate)nonwovens, Fibers and Polymers,(5), pp122–127 [13] Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W. (2005): Sustained release of proteins from electrospun biodegradable fibers, Biomacromolecules , 6, pp2017–2024 [14] Taylor, G. (1964): Disintegration of water drops in an electric field, Proceedings of the Royal Society, London, Series A, (280, 1382), pp383–397 [15] Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. (2005): Electrospinning of nanofibers, Journal of Applied Polymer Science, (96), pp557–569 [16] https://nanoed.tul.cz/pluginfile.php/2264/course/section/865/Prezentace2_electrospinning %20-%20introduction%20EN.pdf, Available from: [16.01.2015]</p><p>[17] Li,D.; McCann, J. T.; Xia, Y. (2006): Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes, J. Am. Ceram. Soc., (89), pp1861–1869 [18] Theron, A.; Zussman, E.; Yarin, A. L. (2001): Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology, pp 384 [19] Greiner, A.; Wendorff, J. H. (2007): Electrospinning: A fascinating method for the preparation of ultrathin fibers, Angewandte Chemie Int. Ed., (46), pp5670–5703 [20] He, J.H.; Wan, Y.Q.; Xu, L. (2007): Nano-effects, quantum-like properties in electrospun nanofibers, Chaos, Solitons & Fractals, (33), pp26–37 [21] Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D.H.; Wang, P. (2002): Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts, Biotechnoogy Progress, (18,5), pp1027–1032 [22] Goldberg, M.; Langer, R.; Jia, X. (2007): Nanostructured materials for applications in drug delivery and tissue engineering, Journal of Biomaterials Science, Polymer Edition, (18,3), pp241–268 [23] Tuzlakoglu K.; Bolgen, N.; Salgado, A.J.; Gomes, M.E,; Piskin, E.; Reis, R. (2005): Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering, Journal of Materials Science: Materials and Medicine, (16), pp1099–1104 [24] Mohammadi, Y.; Soleimani, M.; Fallahi, S.M.; Gazme, A.; Haddadi, A.V.; Arefian, E. (2007): Nanofibrous poly(Ɛ-caprolactone)/poly(vinylalcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells, The International Journal of Artificial Organs, (30,3), pp204–211 [25] Duan, B.; Wu, L.; Li, X.; Yuan, X.; Li, X.; Zhang, Y.;Yao, K. (2007): Degredation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro, Journal of Biomaterials Science, Polymer Edition, (18,1), pp95–115 [26] Khanam, N.; Mikoryak, C.; Draper, R.K.; Balkus, K.J. (2007): Electrospun linear polyethyleneimine scaffolds for cell growth, Acta Biomaterialia, (3), pp1050–1059 [27] Hong, K.H.(2007): Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings, Polymer Engineering and Science, (47,1), pp43–49 [28] Ashammakhi, N.; Ndreu, A.; Piras, A.M.; Nikkola, L.; Sindelar, T.; Ylikauppila, H.; Harlin, A.; Gomes, M.E.; Neves, N.M.; Chiellini, E.; Chiellini, F.; Hasirci, V.; Redl, H; Reis, R.L.(2007): Biodegradable nanomats produced by electrospinning: Expanding multifunctionality and potential for tissue engineering, Journal of Nanoscience and Nanotechnology (7,3), pp862–882 [29] Teo, W.E.; He, W.; Ramakrishna, S. (2006): Electrospun scaffold tailored for tissue- specific extracellular matrix, Biotechnology Journal., (1,9), pp918–929 [30] Chen, F.; Li, X; Mo, X.; He, C.; Wang, H.; Ikada, Y. J. (2008): Electrospun chitosan- P(LLA-CL) nanofibers for biomimetic extracellular matrix, Journal of Biomaterias Science- Polymer Edition, (19,5), pp677–691 [31] Soffer, L,; Wang, X.; Zhang, X.; Kluge, J.; Dorfmann, L.; Kaplan, D.L.; Leisk, G. (2008): Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts, Journal of Biomaterials Science, Polymer Edition, (19,5), pp653–664 [32] FAO, available from http://faostat3.fao.org/search/*/E [33] Gulrajani, M.L., (1992): Degumming of silk, Rev.Prog.Color Relat Top., 22(1), pp79-89 [34] Li,Y.; Dai, X-Q. (2006): Biomechanical engineering of textiles and clothing, p164, Woodhead Publishing in Textiles, Cambridge, U.K. [35] Cappello, J.; MacGrath, K.P.; Viney, C. (1994): Spinning of protein polymers fibers, Kaplan, D.; Adam, W..; Farmer, B.; pp311–327, ACS, Washington, DC. [36] Chen, C.; Chuanbao, C.; Xilan, M.; Yin, T.; Hesun, Z. (2006): Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method, Polymer , (47), pp6322–6327 [37] Meechaisue, C.; Wutticharoenmongkol, P.; RujiraWaraput Huangjing, T.; Ketbumrung, N.; Pavasant, P.; Supaphol, P. (2007): Preparation of electrospun silk fibroin fiber mats as bone scaffolds: A preliminary study, Biomedical Materials, (2), pp181–188 [38] Zoccola, M.; Aluigi, A.; Vinelis,C.; Tonin, C.; Ferrero, F.; Piacentino, M.G. (2008): Study on cast membranes and electrospun nanofibres made from keratin/fibroin blends, Biomacromolecules, (9), pp2819-2825 [39] Yin, G.; Zhang, Y.; Bao, W.; Wu, J.; Shi, D.; Dong, Z.; Fu, W. (2009): Study on the properties of the electrospun silk fibroin/gelatin blend nanofibres for scaffolds, Journal of Applied Polymer Science, (111), pp1471-1477 [40] Zhou, W.; He, J.; Du, S.; Cui, S.; Gao, W. (2011): Electrospun silk fibroin/cellulose acetate blend nanofibres: structure and properties, Iranian Polymer Journal, (20,5), pp389-397 [41] Chutipakdeevong, J.; Ruktanonchai, U.R.; Supaphol, P.(2013): Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing, Journal of Applied Polymer Science, Wiley Online Library,pp3634-3644 [42] Vepari, C.; Kaplan, D.L. (2007): Silk as a biomaterial, Prog. Polym. Sci., (32), 8-9,pp 991-1007 [43] Ki, CS.; Lee, K.H.; Baek, D.H.; Hattori, M.; Um, I.C.; Ihm, D.W.; Park, Y.H. (2007): Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system, Journal of Applied Polymer Science, (105), 3, pp1605-1610 [44] Gosline, J.M.; Demont, M.E.; Denny, M.W. (1986): The structure and properties of spider silk, Endeavour, (10), pp37-43 [45] Altman, GH.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.S. (2003): Silk- based biomaterials, Biomaterials, (24), pp401-416 [46] Park, K.E.; Jung, S.Y.; Lee, S.J.; Min, B.M.; Park, W.H.(2006): Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers, International Journal of Biological Macromolecules, (38), pp165-173</p><p>[47] Zhu, J.; Zhang, Y.; Saho, H.; Hu, X. (2008): Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration, Polymer, (49,12), pp2880-2885 [48] Jin, H.; Fridrikh, S.V.; Rutledge, G.C.; Kaplan, D.L. (2002): Electrospinning Bombyx mori silk with poly (ethylene oxide), Biomacromolecules, (3), pp1233-1239 [49] Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F. (2004): Regeneration of bombyx mori silk by electrospinning. Part 2: Process optimization and empirical modelling using response surface methodology, Polymer, (45), pp3701–3708 [50] Kim, U.J.; Park, J.; Kim, H.J.; Wada, M.; Kaplan, D.L. (2005): Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin, Biomaterials, (26), pp2775-2785 [51] Park, W.; Jeong, L.; Yoo, D.; Hudson, S. (2004): Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers, Polymer, (45), pp7151-7157 [52] Zhang, X.; Baughman, C.B.; Kaplan, D.L. (2008): In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth, Biomaterials, (29), pp2217-2227 [53] Sheikh, F.A.; Ju, H.W.; Moon, B.M.; Park, H.J.; Kim, J-H.; Lee, O.J.; Park, C.H. (2013): Facile and highly efficient approach for the fabrication of multifunctional silk nanofibres containing hydroxyapatite and silvernanoparticles, Journal of Biomedical Materials Research Part A, (00A, 00), pp1-11 [54] Qu,J.; Wang, D.; Wang,H.; Dong, Y.; Zhang, F.; Zuo, B.; Zhang, H. (2013): Electrospun silk fibroin nanofibres in different diameters support neurite outgrowth and promote astrocyte migration, Journal of Biomedical Materials Research Part A, (Vol 101A, Issue 9), pp2667- 2678 [55] Min, B.M.; Lee, G.; Kim, S.H.; Nam,Y.S.; Lee, T.S.; Park, W.H. (2004): Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro, Biomaterials, (25,7–8), pp1289–1297 [56] Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H.(2003): Silk fibroin nanofiber: Electrospinning, properties and structure, The Society of Polymer Science, (35), pp 185–190, Japan [57] Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F. (2003): Regeneration of bombyx mori silk by electrospinning–Part 1: Processing parameters and geometric properties, Polymer, (44), pp5721–5727 [58] Ki, C. S.; Gang, E. H.; Um, I. C.; Park, Y. H. (2007): Nano fibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption, Journal of Membrane Science, (302), pp20–26 [59] Jeong, L.; Lee, K. Y.; Liu, J. W.; Park, W. H. (2006): Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapour, International Journal of Biological. Macromolecules, (38), pp140–144 [60] Wang, M.; Yu, J. H.; Kaplan, D. L.; Rutledge, G. C. (2006): Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning, Macromolecules, (39), pp1102–1107 [61] Akturk,O.; Tezcaner, A.; Bilgili, H.; Deveci, M.S.; Gecit, M.R.; Keskin, D. (2011): Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial, Journal of Bioscience and Bioengineering, (112, 3),pp.279-288 [62] Zhu, M.; Wang, K.; Mei, J.; Li, C.; Zhang, J., Zheng, W.; An, D. Xiao, N.; Zhao, Q.; Kong, D (2014): Available from: http://dx.doi.org/10.1016/j.actbio.2014.01.022, [12.02.2014] [63] Han, F.; Liu, S.; Liu, X.; Pei, Y.; Bai, S.; Zhao, H.; Lu, Q.; Ma, F.; Kaplan, D.L.; Zhu,H. (2014): Woven silk fabric-reinforced silk nano fibrous scaffolds for regenerating load-bearing soft tissues, Acta Biomaterialia, (10), pp921-930 [64] Lu, Q.; Wang, X.L.; Lu, S.Z.; Li, M.Z.; Kaplan, D.L.; Zhu, H.S. (2011): Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process, Biomaterials, (32), pp1059-1067 [65] Kundi, B.; Kurland, N.E.; Bano, S.; Patra, C.; Engel, F.B.; Yadavalli, V.K.; Kundu, S.C. (2014): Silk proteins for biomedical applications: Bioengineering perspectives, Progress in Polymer Science, (39), pp251-267 [66] Elakkiya, T.; Malarvizhi, G.; Rajiv, S.; Natarajan, T.S. (2014): Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery, Polymer International, (63), pp100-105 [67] Anitha,A.; Owmya,S.S.; Kumar, P.T.S.; Deepthi,S.; Chennazhi, K.P.; Ehrlich,H.; Tsurkan, M.; Jayakumar,R. (2014). Chitin and Chitosan in selected biomedical applications, Progress in Polymer Science, Available from: http://dx.doi.org/doi:10.1016/j.progpolymsci.2014,02.008 , [24.02.2014] [68] Teo, W.E. (2005): Porous tubular structures with controlled fibre orientation using a modified electrospinning method, Nanotechnology, (16,6), pp918–924 [69] Aytemiz, D.; Asakura,T. (2014): Application of Bombyx mori Silk Fibroin as a Biomaterial for Vascular grafts, Biotechnology of Silk Biologically-Ispired Systems, (5), pp 69-85</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-