<p> Math Test: Trigonometric Equations</p><p>Part A (20pts): Answer in the spaces provided.</p><p>1. sin 225o = ______(1)</p><p>2. cos 330o = ______(2)</p><p>3. sin245o + cos245o = ______(3)</p><p>4. csc 30o = ______(4)</p><p>5. tan 60o = (do NOT us decimal) ______(5)</p><p>6. Express 330o in radians ______(6)</p><p>7. Express 7π/6 in degrees ______(7)</p><p>8. On the unit circle, what point would you be at o if you performed the following rotation: R150 (1,0) ______(8)</p><p>3 9. Solve: sin x ______(9) 2</p><p>10. What is the arc length of the indicated angle ? ______(10)</p><p>Part B (8pts):</p><p>12. Convert to Radians: a) 195o b) 1080o</p><p>13. Convert to Degrees: a) 9π/5 b) 9.42 Part C(30pts):</p><p>14. Solve for x (all possible angles): (5pts each)</p><p> a) cos2x + 2 cos x – 3 = 0 b) 2cos x 3 0</p><p> c) 5 sin x + 1 = 0 d) sin x = 1/2</p><p>15. A rubber ball is dropped from a height of 10m and takes 1 second to hit the ground. After 1 more second, the ball bounces back up to a height of 10m. This pattern repeats until the experiment is stopped. (10pts)</p><p> a) Use a cosine equation to describe this periodic motion with y representing height and x representing time.</p><p> b) Use the equation to determine all the times when the ball is 9m above the ground.</p><p>Part D (18pts): Simplify: sin 450 2 a) b) cos3300 1 2sin 600</p><p>2sin1200 c) 6sin 300 4cos 450</p><p>Part E (24pts): Prove the following identities: a) 4 cot2x csc x tan x = 4 cot x b) 2 cos x + 2 tan2x cos x = 2 sec x</p><p> cos 2 x c) sin x csc x sin x</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages3 Page
-
File Size-