By: Neil E. Cotter s2

By: Neil E. Cotter s2

<p> C O NCEPTU A L TOOLS By: Neil E. Cotter STATISTICS STUDENT'S OR t-DISTRIBUTION Derivation</p><p>TOOL: The random variable T, defined as follows, is the sampled data analogue of a standard normal (or gaussian) distribution. Because the value of T depends on S, however, T has a t-distribution that differs slightly from the standard normal (or gaussian) distribution. X - m T ә S / n</p><p> where n  number of data points, X , (which are independent and normally distributed i with mean  and variance ) n 1 X ә X  sample mean n е i i=1 n 2 1 2 S ә (X - X )  sample variance n - 1е i i=1 The probability density function of T is a t-distribution with  = n – 1 degrees of freedom:</p><p>- (n+1) /2 G((n +1)/2)ж t2 ц f (t) = з1 + ч T з n ч G(n /2) pn и ш </p><p>DERIV: The first step is to express T in terms of random variables with known</p><p> distributions: Z T = c / n</p><p> where X - m S2 Z ә and c2 ә n s / n s 2</p><p>C O NCEPTU A L TOOLS By: Neil E. Cotter STATISTICS STUDENT'S OR t-DISTRIBUTION Derivation (cont.)</p><p>As shown in other Conceptual Tools, Z has a standard normal (or gaussian) distribution, and 2 has a chi-squared distribution with  = n – 1 degrees of freedom:</p><p>1 - z2 /2 fZ (z) = e 2p 1 м x(n /2)- 1e- x /2 x > 0 п n /2 f (x) = 2 G(n /2) c 2 н п о0 x Ј 0 As shown in another tool, Z and 2 are also independent. This allows us to write the joint distribution of Z and 2 as the product of the respective</p><p> probability density functions for Z and 2:</p><p>м 1 - z2 /2 1 (n /2)- 1 - x /2 e x e x > 0 п 2p n /2 f (z,x) = н 2 G(n /2) п о0 x Ј 0 To find the probability density for T, we consider the cumulative distribution for T and take its derivative:</p><p> d d d Ҙ Ҙ fT (t) = FT (t) = P(T Ј t) = z f (z,x)dxdz т-Ҙ т =t dt dt dt x / n</p><p>NOTE: We treat the case of t > 0. We have t in the lower limit in this case because larger values of x give smaller values of t. For the</p><p> case of t < 0, we would integrate from –∞ to t. We move the derivative inside the outer integral and write the lower limit in terms of the x more clearly: й щ Ҙ к d Ҙ ъ fT (t) = f (z,x)dx dz т-Ҙ кdt т z2 ъ x=n лк t2 ыъ The chain rule yields an interpretation of the derivative of the integral:</p><p> d Ҙ d Ҙ dx 2 f (z,x)dx = 2 f (z,x)dx Ч dt тx=n z dx тx=n z dt t2 t2</p><p>C O NCEPTU A L TOOLS By: Neil E. Cotter STATISTICS STUDENT'S OR t-DISTRIBUTION Derivation (cont.)</p><p> or 2 d Ҙ - 2z f (z,x)dx = - f (z,x) z2 Чn dt т z2 x=n 3 x=n t2 t t2</p><p>Making this substitution, we have the following expression: 2 Ҙ 2 2z fT (t) = f (z,x) z Чn dz т-Ҙ x=n 3 t2 t Now we use the expression for f(z, x), assuming t > 0:</p><p>м жn z2 ц (n /2)- 1 - / 2 п 2 з 2 ч 1 - z2 /2 1 жnz ц з t ч 2 п e e и ш z > 0 f (z,x) nz = n /2 з 2 ч x= н 2p 2 G(n /2)з t ч t 2 п и ш п о0 z Ј 0</p><p>NOTE: We have the condition that z > 0 because the definition of T requires Z > 0 to achieve T > 0. (X and X are always</p><p> positive.) Incorporating the constraint on z into the lower limit of the outer integral</p><p> yields the following expression:</p><p>жn z2 ц (n /2)- 1 - з ч/ 2 1 2 1 жn z2 ц з 2 ч 2z2 f (t) = Ҙ e- z /2 e и t ш n dz T т0 n /2 з 2 ч 3 2p 2 G(n /2)и t ш t It is helpful to define a term for the constants:</p><p>1 1 (n /2)- 1 1 1 n /2 k = 2 n Чn = n 2p 2n /2G(n /2) p 2(n- 1) /2G(n /2)</p><p>Using this new term, we have the following expression:</p><p>жn z2 ц (n /2)- 1 - / 2 2 з 2 ч 2 Ҙ - z2 /2жz ц з t ч жz ц1 f (t) = k e з ч e и ш з ч dz T т0 з 2 ч з 2 ч t иt ш иt ш or</p><p>C O NCEPTU A L TOOLS By: Neil E. Cotter STATISTICS STUDENT'S OR t-DISTRIBUTION Derivation (cont.)</p><p>2ж n ц n /2 - z 1 + / 2 2 Ҙ з 2 ч жz ц 1 f (t) = k e и t ш з ч dz T т0 з 2 ч t иt ш We define the following variable that allows us to use a convenient change of variables:</p><p> n zt ә z 1+ t2</p><p>We have the following relationships for the change of variables:</p><p> dzt = dz n , z = 0 z = 0, z ® z ® 1+ Ю t Ҙ Ю t Ҙ t2</p><p> and</p><p>- 1 z2 z2 1 1 1 1 ж t2 ц = t = z2 = z2 = z2n- 1 1 + 2 n Ч 2 t 2 t 2 t з ч t 1+ t t + n n t v 2 1+ и ш t v</p><p>In terms of zt we have the following integral expression:</p><p>2 - n /2 Ҙ 2 n /2 - n /2ж t ц 1 dz f (t) = k e- zt /2 z2 (n) 1 + t T т0 ( t ) з ч n n t2 и ш 1+ n</p><p> or</p><p>2 - (n+1) /2 - (n+1) /2ж t ц Ҙ - z2 /2 2 n /2 f (t) = kn з1 + ч e t z dz T з n ч т0 ( t ) t и ш We change variables again in order to make the integrand have the form of a chi-squared distribution:</p><p>2 w ә zt We have the following relationships for the change of variables: dw dw = = dzt , zt = 0 Ю w = 0, zt ® Ҙ Ю w ® Ҙ 2zt 2 w</p><p>C O NCEPTU A L TOOLS By: Neil E. Cotter STATISTICS STUDENT'S OR t-DISTRIBUTION Derivation (cont.)</p><p>In terms of w we have the following integral expression:</p><p>2 - (n+1) /2 - (n+1) /2ж t ц Ҙ n /2 - w /2 dw f (t) = kn з1 + ч w e T з n ч т0 и ш 2 w By moving appropriate constants inside the integral, we obtain the integral of an entire chi-squared distribution with  + 1 degrees of freedom. In</p><p> other words the probability represented by the following integral must equal unity: 1 Ҙ w((n+1) / 2)- 1e- w / 2dw =1 т0 2(n+1) /2G((n +1)/2)</p><p>It follows that we have the following expression for the probability density function for T:</p><p>2 - (n+1) /2 (n- 1) /2 - (n+1) /2ж t ц f (t) = k2 G((n +1)/2)n з1 + ч T з n ч и ш Simplification of the constants yields the final result: - (n+1) /2 G((n +1)/2)ж t2 ц f (t) = з1 + ч T з n ч G(n /2) pn и ш </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us