Great Lakes College Tuncurry Junior Campus

Great Lakes College Tuncurry Junior Campus

<p> Great Lakes College ~ Tuncurry Junior Campus Year 10 Mathematics Topic Test Coordinate Geometry </p><p>Name: ______Instructions 1. Answer all questions. 2. Show all necessary working. 3. Multiple-choice questions circle the most correct answer.</p><p>Section One 15 multiple-choice questions 2 marks each Question One The value of the triangle in 2 122 13 could be </p><p>A. 1 B. -1 C. -13 D. 5</p><p>Question Two 1 The gradient of y  4x  is 2 1 1 A. B. 4 C.  4 D.  2 2 Question Three Which of these lines has a gradient of  1</p><p>A. y  1 B. y  x  1 C. y  x 1 D. y  x  1 </p><p>Question Four The graph of x  0 </p><p>A. has zero gradient B. is the x-axis C. is the y axis D. has no y-intercept</p><p>Question Five the y-intercept of y  3x  6 is</p><p>A.  6 B. 2 C. 3 D.  3 </p><p>1 Question Six Which of these lines is not parallel to the other three?</p><p>A. y  4  x B. y  6  4x C. y  4x D. y  4x  10 </p><p>Question Seven From the diagram below, the coordinates of the midpoint of AB are</p><p> y 4 A3,4</p><p>3</p><p>2</p><p>1</p><p>-4 -3 -2 -1 0 1 2 3 4 x</p><p>-1</p><p>-2 B-3,-2</p><p> 1 1   1 1  A.  ,  B.  ,  C. 1,0 D. 0,1 2 2  2 2</p><p>Question Eight The length of the interval AB in the diagram below is </p><p>2</p><p>A 2,1 1</p><p>-3 -2 -1 1 2 3 -1</p><p>-2 B -2,-2</p><p>A. 4 B. 5 C. 6 D. 3</p><p>2 Question Nine Using the diagram in Question Eight the gradient of AB is ( the formula is Rise Gradient  ) Run 4 3 A. -1 B. C. D. 1 3 4 Question Ten Using the diagram below the y - intercept is y 4</p><p>3</p><p>2</p><p>1</p><p>-2 -1 0 1 x -1</p><p>A. 0 B. -2 C. 3 D. unknown</p><p>Question Eleven Using the diagram in Question Ten the gradient of the line is 2 2 3 3 A.  B. C. D.  3 3 2 2 Question Twelve Combining the answers of Question Ten and Question Eleven, the equation for the line in Question Ten is 3 3 2 2 A. y  x  3 B. y   x  2 C. y   x D. y  x  3 2 2 3 3 Question Thirteen Which line is parallel to y  4?</p><p>A. y  4x B. y  1 C. x  4 D. y  x  4 </p><p>3 Question Fourteen Which of these points lies on the line y  3x  3 ?</p><p>A. ( 2, 2 ) B. ( -1, 1 ) C. ( 3,12 ) D. ( 2,6 )</p><p>Question Fifteen 3y  3x  3 can be rewritten as:</p><p>A. y  x  1 B. y  x  1 C. y  3x  1 D. y  3x  3</p><p>Section Two Question One Complete the table of values for y  3x  4 </p><p>X -3 -2 -1 0 1 2 3 Y</p><p>Question Two 2 marks Write any equation of a straight line that has a y – intercept of 4 ______</p><p>Question Three 2 marks</p><p>Draw the graph of x  3 on a the number plane </p><p> y 3</p><p>2</p><p>1</p><p>-3 -2 -1 0 1 2 3 x -1</p><p>-2</p><p>-3</p><p>4 Question Four 2 marks Write the equation of a line that has a gradient of 7 and a y – intercept of -3 ______Question Five The straight line AB on a number plane has the endpoints A ( -3,1 ) and B ( 7,5 ) Find: a. the gradient of AB 2 marks ______b. the length of AB as a surd ( exact value ) 2 marks ______c. the midpoint of AB 2 marks ______</p><p>5 Question Six 4 marks Find the equation of this line</p><p> y</p><p>8</p><p>6</p><p>4</p><p>2</p><p>-5 -2 -1 0 1 x</p><p>______</p><p>6 REVISION NOTES for COORDINATE GEOMETRY</p><p>1. Application of Pythagoras theorem 2  2  2 c a b c or c  a 2  b 2 b</p><p> a</p><p>2. Slope of straight lines that have a. + positive gradient eg +4 b. – negative gradient eg -2</p><p>3. Interpretation of y  mx  b where m is the gradient value and b is the y – intercept </p><p>4. Given the gradient and y – intercept give the equation of the straight line.</p><p>5. From a sketch of a straight line on a number plane identify the y – intercept Rise and be able to calculate the gradient using m  . Run</p><p>6. Given the endpoints of a straight line be able to calculate the a. the midpoint. b. the length of the line. c. the gradient of the line. using the appropriate formulae for each. </p><p>7. Identify the value that parallel lines share. The same gradient value</p><p>8. The equations of the axises on a number plane</p><p>9. Given the coordinates of a point determine whether this point is on a given line. </p><p>7</p><p>8</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us