<p>NUPECC Impact and Application of Nuclear Science: Life Science</p><p>1 Introduction G. Kraft, Darmstadt (Germany)</p><p>2 Medical Diagnosis</p><p>2.1 NMR M. Leach (Sutton, UK) 2.2 SPECT R. Ott (Sutton, UK) 2.3 PET K. Wienhard (Köln, Germany) 2.4 Small Animal Imaging P. Laniece/F. Pain (Orsay, France)</p><p>3 Medical Therapy</p><p>3.1 Proton and Heavy-Ion Therapy G. Kraft (Darmstadt J. Debus (Heidelberg, Germany) 3.2 Hadron Activity in the World U. Amaldi (Milano, Italy)</p><p>4 Biology</p><p>4.1 The Influx of Nuclear Science G. Taucher-Scholz, to Radiobiology G. Kraft (GSI, Germany) B. Michael (Gray Lab, UK) M. Belli (Rome, Italy) 4.2 Radiobiology for Space Research L. Sabatier, I. Testard (Paris, France) S. Ritter G. Kraft (GSI, Germany) M. Durante (Naple, Italy) 4.3 Isotopic Tracers in Bio-medical M.-C. Cantone (Milano, Italy) Applications 4.4 Radiocarbon Dating of the Iceman Ötzi W. KutscheraAccelerator Mass Spectroscopy (Vienna, Austria)</p><p>5 Risk Estimation Invisible Threat A.M. Kellerer (Munich, Germany) The Risk of Ionizing Radiation</p><p>6 Summary NUPECC Impact and Application of Nuclear Science Contents of the Chapters</p><p>1 Introduction G. Kraft, Darmstadt</p><p>Historische Entwicklung der Strahlenbiologie</p><p>History</p><p>1895 W.C. Röntgen X-Rays 1896 H. Becquerel Natural Radioactivity 1998 M. + P. Curie Radium First Radiobiological Experiments, Application of Radium in Therapy. 1923 G.de Hevesey Tracer Principle 1927 Blumgart/Weiss Blood Circulation Studies (Ra) 1931 E.O. Lawrence Cyclotron 1934 E. Fermi 128-Iodine 1937 R. Stone Neutron Therapy 1938 Hertz, Roberts, Evans Thyroid Studies with Iodine 1939 J. Lawrence Articifial Radioisotopes for Therapy 1942 Hertz + Roberts Treatment of Thyroid Hyperfunction 1946 R. Wilson Proposed Proton and Charbon Therapy 1951 Wrenn/Brownell,Sweet Positron Emission Tomography – PET 1954 J. Lawrence Proton Therapy 1958 H. Anger Scintillation Camera 1970s G. Hounsfield/ A. Cormack Computer Tomography 1972 Damadian Patent of NMR 1974 C.A. Tobias/J. Lawrence Heavy Ion Therapy 1997 GSI/PSI Beam Scanning and Tumor-Conform Ion Treatment</p><p>2 Medical Diagnosis</p><p>2.1 NMR Martin Leach (Sutton, UK) 2.2 SPECT Robert Ott (Sutton, UK) 2.3 PET Klaus Wienhard (Köln) 2.3.1 The Method 2.3.1.1 Production of positron emitters 2.3.1.2 Radiochemistery 2.3.1.3 Tomographs 2.3.1.4 In vivo biochemistery 2.3.2 New Developments 2.3.2.1 New scintillators 2.3.2.2 Volume imaging 2.3.2.3 Hybrid scanner 2.3.3 Medical applications 2.4 New Detectors A. Walenta (Siegen)</p><p>3 Medical Therapy</p><p>3.1 Proton Therapy Gudrun and Micheal Goitein (Villigen, Switzerland) 3.2 Heavy-Ion Therapy Jürgen Debus (Heidelberg), Gerhard Kraft (Darmstadt) 3.2.1 Physical advantages 3.2.1.1 Smaller scattering than any other beam 3.2.1.2 In-vivo dose localisation by PET 3.2.2 Radiobiological advantages 3.2.2.1 High RBE for cell killing in the target 3.2.3 Prerequisites for clinical use 3.2.3.1 Target conform dose delivery 3.2.4 Clinical indications and experience 3.3 World-wide Activities Ugo Amaldi (Milano, Italy)</p><p>4 Biology</p><p>4.1 Nuclear Tracer Techniques Marie-Claire Cantone (Milano, Italy) 4.2 Accelerator Spectroscopy Marie-Claire Cantone (Milano, Italy) 4.3 Radiobiology Mauro Belli (Rome, Italy) 4.4 Radiobiology for Space Research Laure Sabatier(Paris, France) 4.5 Microbeams Barry Michael (Surrey, UK) 4.5.1 Why microbeams? 4.5.1.1 resolving targets and pathways of radiation effect 4.5.1.2 exploring effects of extreme low doses 4.5.2 A brief history of microbeam approaches 4.5.3 Modern microbeam systems: 4.5.3.1 charged-particle systems 4.5.3.2 focused soft X-ray systems 4.5.3.3 electron systems 4.5.3.4 imaging and control 4.5.3.5 list of existing and planned facilities 4.5.4 Measured-track techniques 4.5.5 Overview of recent research using microbeams and measured-track methods 4.6 Risk Estimation of Radioactive Exposure A.M. Kellerer (München)</p><p>5 Summary</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages4 Page
-
File Size-