Pre-Calculus/Trig 3

Pre-Calculus/Trig 3

<p>Pre-Calculus/Trig 3 Name ______Logarithms Worksheet</p><p>Rewrite the exponential equation in logarithmic form. 1 1. 53 125 ______6. ______ 814  3</p><p>2 1 2. 6  ______7. 103  0 001 ______36 . 3. e3  20.085 ______8. e0  1 ______</p><p>4. e x  4 ______9. u v  w ______3 5. 82 64 ______10. ______ 9 2  27</p><p>Rewrite the logarithmic equation in exponential form. 1. log2 8  x ______6. ln143  x ______</p><p>2. log5 625  4 ______7. log1000  3 ______</p><p>3. logx 13  5 ______8. ln x  14 ______</p><p>1 1 4. log  3 ______9. 1og  2 ______2 8 100 5. log4 64  3 ______10. ln18  x ______</p><p>Use your calculator to evaluate each logarithm. Round to four decimal places.</p><p>1. log 68  ______6. ln 9548  ______</p><p>2. log100  ______7. log.0001  ______</p><p>3. ln 9  ______8. log17  ______</p><p>4. log10  ______9. ln125  ______</p><p>5. ln 216  ______10. log 6158  ______Use the change of base formula to evaluate each logarithm. Round to four decimal places.</p><p>1. log3 7  ______6. log0.5 4  ______</p><p>2. log9 0.4  ______7. log15 1250 ______</p><p>3. log7 4  ______8. log4 0.55  ______</p><p>4. 125  ______9. log1 0.015  ______log20 3 5. log6 94  ______10. log17 2  ______</p><p>Use the properties of logarithms to expand each of the following.</p><p>1. log2 5x  ______</p><p>4 2. log8 x  ______</p><p>5 3. log  ______3 x</p><p>4. ln z  ______</p><p>5. ln z(z  1)2  ______</p><p> x2 6. log7  ______y 2 z3 3  x2 1 7. log  ______ 3   x  a y 4 8. logx  ______z 4</p><p> x 9. ln  ______x2  1</p><p>10. log(x2  8x  15)  ______Use the properties of logarithms to write the following as a single logarithm.</p><p>1. ln x  ln 2  ______</p><p>2. log4 z  log4 y  ______</p><p>3. 2log2 (x  4)  ______</p><p>1 4. log 5x  ______3 3</p><p>5. log3(x  2)  log3(x  2)  ______</p><p>6. 2ln 8  5ln z  ______</p><p>7. 3ln 8  2ln y  4ln z  ______</p><p>8. 4[ln z  ln(z  5)]  2ln(z  5)  ______</p><p>9. ln x  2[ln(x  2)  ln(x  2)]  ______</p><p>3 6 3 4 10. log 5t  log t  ______2 4 4 4</p><p>Given: logx 2  0.3562 , logx 3  0.5646 , and logx 5  0.8271, Evaluate each of the following.</p><p>1 1. log 6  ______6. log  ______x x 4 3 2. log  ______7. log 15  ______x 2 x 5 3. log 25  ______8. log  ______x x 3 4. logx 2  ______9. logx 18  ______</p><p>5. logx 40  ______10. logx 30  ______</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us