<p>1</p><p>Supplementary Information 2: References to Tables 1-7</p><p>REFERENCES</p><p>1. Barsevick A, Frost M, Zwinderman A, et al.: I'm so tired: biological and genetic mechanisms of cancer-related fatigue. Qual Life Res 19:1419-1427, 2010 review</p><p>2. Jun SE, Kohen R, Cain KC, et al.: TPH gene polymorphisms are associated with disease perception and quality of life in women with irritable bowel syndrome. Biol Res Nurs 16:95- 104, 2014 patient sample; candidate gene study</p><p>3. Segerstrom SC, Miller GE: Psychological stress and the human immune system: a meta- analytic study of 30 years of inquiry. Psychol Bull 130:601-630, 2004 meta-analysis</p><p>4. Schroecksnadel K, Fiegl M, Prassl K, et al.: Diminished quality of life in patients with cancer correlates with tryptophan degradation. J Cancer Res Clin Oncol 133:477-485, 2007 patient sample; biomolecular marker</p><p>5. Platten M, Wick W, Van den Eynde BJ: Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72:5435-5440, 2012 review</p><p>6. Fernandez-de-Las-Penas C, Cantarero-Villanueva I, Fernandez-Lao C, et al.: Influence of catechol-o-methyltransferase genotype (Val158Met) on endocrine, sympathetic nervous and mucosal immune systems in breast cancer survivors. Breast 21:199-203, 2012 patient sample; candidate gene study (saliva)</p><p>7. Lim J, Ebstein R, Tse CY, et al.: Dopaminergic polymorphisms associated with time-on-task declines and fatigue in the Psychomotor Vigilance Test. PLoS One 7:e33767, 2012 healthy individuals; candidate gene study (saliva)</p><p>8. Sloan JA, Shi Q, Lee A, et al.: Relationship between genetic markers and quality of life (QOL) in stage III colon cancer (CC) patients (pts) prior to adjuvant treatment. J Clin Oncol 30:3617, 2012 patient sample; candidate gene study</p><p>9. Sloan JA, de AM, Decker P, et al.: Genetic variations and patient-reported quality of life among patients with lung cancer. J Clin Oncol 30:1699-1704, 2012 patient sample; candidate gene study; replication with split sample</p><p>10. Sloan JA, McCleod H, Sargent D, et al.: Preliminary evidence of relationship between genetic markers and oncology patient quality of life (QOL). J Clin Oncol 22:5, 2004</p><p>11. Clement K, Langin D: Regulation of inflammation-related genes in human adipose tissue. J Intern Med 262:422-430, 2007 review</p><p>12. Illi J, Miaskowski C, Cooper B, et al.: Association between pro- and anti-inflammatory cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression. Cytokine 58:437-447, 2012 patient sample + healthy individuals; candidate gene study</p><p>13. de Raaf PJ, Sleijfer S, Lamers CH, et al.: Inflammation and fatigue dimensions in advanced cancer patients and cancer survivors: An explorative study. Cancer 118:6005-6011, 2012 patient sample; biomolecular marker 2</p><p>14. Meyers CA, Albitar M, Estey E: Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 104:788-793, 2005 patient sample; biomolecular marker</p><p>15. Kerr JR, Burke B, Petty R, et al.: Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes. J Clin Pathol 61:730-739, 2008 patient sample + healthy individuals; candidate gene study</p><p>16. Collado-Hidalgo A, Bower JE, Ganz PA, et al.: Cytokine gene polymorphisms and fatigue in breast cancer survivors: early findings. Brain Behav Immun 22:1197-1200, 2008 patient population-based; candidate gene study</p><p>17. Rausch SM, Clark MM, Patten C, et al.: Relationship between cytokine gene single nucleotide polymorphisms and symptom burden and quality of life in lung cancer survivors. Cancer 116:4103-4113, 2010 patient sample; candidate gene study</p><p>18. Miaskowski C, Dodd M, Lee K, et al.: Preliminary evidence of an association between a functional interleukin-6 polymorphism and fatigue and sleep disturbance in oncology patients and their family caregivers. J Pain Symptom Manage 40:531-544, 2010 patient sample + healthy individuals; candidate gene study</p><p>19. Ahlberg K, Ekman T, Gaston-Johansson F: Levels of fatigue compared to levels of cytokines and hemoglobin during pelvic radiotherapy: a pilot study. Biol Res Nurs 5:203-210, 2004 patient sample; biomolecular marker</p><p>20. Aouizerat BE, Dodd M, Lee K, et al.: Preliminary evidence of a genetic association between tumor necrosis factor alpha and the severity of sleep disturbance and morning fatigue. Biol Res Nurs 11:27-41, 2009 patient sample + healthy individuals; candidate gene study</p><p>21. Aspler AL, Bolshin C, Vernon SD, et al.: Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood. Behav Brain Funct 4:44, 2008 population-based; candidate gene study</p><p>22. Wang XS, Williams LA, Krishnan S, et al.: Serum sTNF-R1, IL-6, and the development of fatigue in patients with gastrointestinal cancer undergoing chemoradiation therapy. Brain Behav Immun 26:699-705, 2012 patient sample</p><p>23. Saligan LN, Kim HS: A systematic review of the association between immunogenomic markers and cancer-related fatigue. Brain Behav Immun 26:830-848, 2012 review</p><p>24. Bower JE, Ganz PA, Irwin MR, et al.: Cytokine genetic variations and fatigue among patients with breast cancer. J Clin Oncol 31:1656-1661, 2013 population-based; candidate gene study</p><p>25. Schubert C, Hong S, Natarajan L, et al.: The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav Immun 21:413-427, 2007 review</p><p>26. Piraino B, Vollmer-Conna U, Lloyd AR: Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 26:552-558, 2012 patient sample; candidate gene study</p><p>27. Schoormans D, Radonic T, de WP, et al.: Mental quality of life is related to a cytokine genetic pathway. PLoS One 7:e45126, 2012 3 patient sample; genome-wide gene expression study (skin biopsies and peripheral blood)</p><p>28. Rich TA: Symptom clusters in cancer patients and their relation to EGFR ligand modulation of the circadian axis. J Support Oncol 5:167-174, 2007 review</p><p>29. Bower JE, Ganz PA, Aziz N: Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom Med 67:277-280, 2005 patient sample; biomolecular marker (saliva)</p><p>30. Posener JA, Schildkraut JJ, Samson JA, et al.: Diurnal variation of plasma cortisol and homovanillic acid in healthy subjects. Psychoneuroendocrinology 21:33-38, 1996 healthy individuals; biomolecular marker</p><p>31. Thornton LM, Andersen BL, Blakely WP: The pain, depression, and fatigue symptom cluster in advanced breast cancer: covariation with the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Health Psychol 29:333-337, 2010 patient sample; biomolecular marker</p><p>32. von Schantz M: Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 87:513-519, 2008 review</p><p>33. Piggins HD: Human clock genes. Ann Med 34:394-400, 2002 review</p><p>34. Viola AU, Archer SN, James LM, et al.: PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613-618, 2007 healthy individuals; candidate gene study</p><p>35. Antypa N, Mandelli L, Nearchou FA, et al.: The 3111T/C polymorphism interacts with stressful life events to influence patterns of sleep in females. Chronobiol Int 29:891-897, 2012 patient sample; candidate gene study (mouthwash sample)</p><p>36. Utge SJ, Soronen P, Loukola A, et al.: Systematic analysis of circadian genes in a population- based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One 5:e9259, 2010 population-based; candidate gene study; replication with independent sample</p><p>37. Ryan JL, Carroll JK, Ryan EP, et al.: Mechanisms of cancer-related fatigue. Oncologist 12 Suppl 1:22-34, 2007 review</p><p>38. Agteresch HJ, Dagnelie PC, van der Gaast A, et al.: Randomized clinical trial of adenosine 5'- triphosphate in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 92:321- 328, 2000 patient sample; RCT; infusion of ATP</p><p>39. Seruga B, Zhang H, Bernstein LJ, et al.: Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8:887-899, 2008 review</p><p>40. Shi Q, Cleeland CS, Klepstad P, et al.: Biological pathways and genetic variables involved in pain. Qual Life Res 19:1407-1417, 2010 review</p><p>41. Fernandez-de-Las-Penas C, Fernandez-Lao C, Cantarero-Villanueva I, et al.: Catechol-O- methyltransferase genotype (Val158met) modulates cancer-related fatigue and pain sensitivity in breast cancer survivors. Breast Cancer Res Treat 133:405-412, 2012 patient sample; candidate gene study (saliva) 4</p><p>42. Jensen KB, Lonsdorf TB, Schalling M, et al.: Increased sensitivity to thermal pain following a single opiate dose is influenced by the COMT val(158)met polymorphism. PLoS One 4:e6016, 2009 healthy individuals; candidate gene study</p><p>43. Diatchenko L, Slade GD, Nackley AG, et al.: Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14:135-143, 2005 healthy individuals; candidate gene study</p><p>44. Hagen K, Pettersen E, Stovner LJ, et al.: The association between headache and Val158Met polymorphism in the catechol-O-methyltransferase gene: the HUNT Study. J Headache Pain 7:70-74, 2006 population-based; candidate gene study</p><p>45. Vargas-Alarcon G, Fragoso JM, Cruz-Robles D, et al.: Catechol-O-methyltransferase gene haplotypes in Mexican and Spanish patients with fibromyalgia. Arthritis Res Ther 9:R110, 2007 patient sample + matched healthy individuals; candidate gene study</p><p>46. Meloto CB, Serrano PO, Ribeiro-DaSilva MC, et al.: Genomics and the new perspectives for temporomandibular disorders. Arch Oral Biol 56:1181-1191, 2011 review</p><p>47. Fijal B, Perlis RH, Heinloth AN, et al.: The association of single nucleotide polymorphisms in the catechol-O-methyltransferase gene and pain scores in female patients with major depressive disorder. J Pain 11:910-5, 915, 2010 patient sample; candidate gene study</p><p>48. van Meurs JB, Uitterlinden AG, Stolk L, et al.: A functional polymorphism in the catechol-O- methyltransferase gene is associated with osteoarthritis-related pain. Arthritis Rheum 60:628- 629, 2009 population-based; candidate gene study</p><p>49. Holliday KL, Nicholl BI, Macfarlane GJ, et al.: Genetic variation in the hypothalamic-pituitary- adrenal stress axis influences susceptibility to musculoskeletal pain: results from the EPIFUND study. Ann Rheum Dis 69:556-560, 2010 population-based; candidate gene (buccal swab)</p><p>50. Finan PH, Zautra AJ, Davis MC, et al.: Genetic influences on the dynamics of pain and affect in fibromyalgia. Health Psychol 29:134-142, 2010 patient sample, candidate gene study (buccal swab)</p><p>51. Herken H, Erdal E, Mutlu N, et al.: Possible association of temporomandibular joint pain and dysfunction with a polymorphism in the serotonin transporter gene. Am J Orthod Dentofacial Orthop 120:308-313, 2001 patient sample + healthy individuals; candidate gene study</p><p>52. Kim H, Lee H, Rowan J, et al.: Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans. Mol Pain 2:24, 2006 patient sample; candidate gene study</p><p>53. Ruano G, Thompson PD, Windemuth A, et al.: Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 36:329-335, 2007 patient sample; candidate gene study</p><p>54. Lindstedt F, Lonsdorf TB, Schalling M, et al.: Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. PLoS One 6:e17752, 2011 5 healthy individuals; candidate gene study (whole blood or saliva)</p><p>55. Ortega-Hernandez OD, Cuccia M, Bozzini S, et al.: Autoantibodies, polymorphisms in the serotonin pathway, and human leukocyte antigen class II alleles in chronic fatigue syndrome: are they associated with age at onset and specific symptoms? Ann N Y Acad Sci 1173:589- 599, 2009 patient sample; candidate gene study</p><p>56. Lindstedt F, Karshikoff B, Schalling M, et al.: Serotonin-1A receptor polymorphism (rs6295) associated with thermal pain perception. PLoS One 7:e43221, 2012 healthy individuals; candidate gene study</p><p>57. Combadiere C, Godin O, Vidal C, et al.: Common CX3CR1 alleles are associated with a reduced risk of headaches. Headache 48:1061-1066, 2008 population-based; candidate gene study</p><p>58. Shabalina SA, Zaykin DV, Gris P, et al.: Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum Mol Genet 18:1037-1051, 2009 healthy individuals; candidate gene study</p><p>59. Dabby R, Sadeh M, Gilad R, et al.: Chronic non-paroxysmal neuropathic pain - Novel phenotype of mutation in the sodium channel SCN9A gene. J Neurol Sci 301:90-92, 2011 patient sample; candidate gene study</p><p>60. Reimann F, Cox JJ, Belfer I, et al.: Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci U S A 107:5148-5153, 2010 patient sample; candidate gene study; replication with external cohort</p><p>61. Guo TM, Liu M, Zhang YG, et al.: Association between Caspase-9 promoter region polymorphisms and discogenic low back pain. Connect Tissue Res 52:133-138, 2011 patient sample + matched healthy individuals; candidate gene study</p><p>62. Loggia ML, Bushnell MC, Tetreault M, et al.: Carriers of recessive WNK1/HSN2 mutations for hereditary sensory and autonomic neuropathy type 2 (HSAN2) are more sensitive to thermal stimuli. J Neurosci 29:2162-2166, 2009 patient sample + healthy individuals; candidate gene study</p><p>63. Ingle JN, Schaid DJ, Goss PE, et al.: Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J Clin Oncol 28:4674-4682, 2010 patient sample; GWAS</p><p>64. Lettre G, Sankaran VG, Bezerra MA, et al.: DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 105:11869-11874, 2008 patient sample; candidate gene study; replication with external cohort</p><p>65. Glueck CJ, McMahon RE, Bouquot JE, et al.: T-786C polymorphism of the endothelial nitric oxide synthase gene and neuralgia-inducing cavitational osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:548-553, 2010 patient sample + matched healthy individuals; candidate gene study</p><p>66. Presciuttini S, Curcio M, Chillemi R, et al.: Promoter polymorphisms of the NOS3 gene are associated with hypnotizability-dependent vascular response to nociceptive stimulation. Neurosci Lett 467:252-255, 2009 healthy individuals; candidate gene study</p><p>67. Doehring A, Antoniades C, Channon KM, et al.: Clinical genetics of functionally mild non- coding GTP cyclohydrolase 1 (GCH1) polymorphisms modulating pain and cardiovascular risk. Mutat Res 659:195-201, 2008 6 review</p><p>68. Peters MJ, Broer L, Willemen HL, et al.: Genome-wide association study meta-analysis of chronic widespread pain: evidence for involvement of the 5p15.2 region. Ann Rheum Dis 72:427-436, 2013 population-based; GWAS; meta-analyses; replication with external cohorts</p><p>69. Rakvag TT, Klepstad P, Baar C, et al.: The Val158Met polymorphism of the human catechol- O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 116:73-78, 2005 patient sample; candidate gene study</p><p>70. Rakvag TT, Ross JR, Sato H, et al.: Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol Pain 4:64, 2008 patient sample; candidate gene study</p><p>71. Ross JR, Riley J, Taegetmeyer AB, et al.: Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer 112:1390-1403, 2008 patient sample; candidate gene study</p><p>72. Nishizawa D, Fukuda K, Kasai S, et al.: Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol Psychiatry, 2012 healthy individuals; GWAS; replication analyses with external cohorts</p><p>73. Kosek E, Jensen KB, Lonsdorf TB, et al.: Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans. Mol Pain 5:37, 2009 healthy individuals; candidate gene study</p><p>74. Reyes-Gibby CC, El OB, Spitz MR, et al.: The influence of tumor necrosis factor-alpha -308 G/A and IL-6 -174 G/C on pain and analgesia response in lung cancer patients receiving supportive care. Cancer Epidemiol Biomarkers Prev 17:3262-3267, 2008 patient sample; candidate gene study</p><p>75. Bessler H, Shavit Y, Mayburd E, et al.: Postoperative pain, morphine consumption, and genetic polymorphism of IL-1beta and IL-1 receptor antagonist. Neurosci Lett 404:154-158, 2006 patient sample; candidate gene study</p><p>76. Chou WY, Wang CH, Liu PH, et al.: Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 105:334-337, 2006 patient sample; candidate gene study</p><p>77. Klepstad P, Rakvag TT, Kaasa S, et al.: The 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 48:1232-1239, 2004 patient sample; candidate gene study</p><p>78. Landau R, Kern C, Columb MO, et al.: Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women. Pain 139:5-14, 2008 patient sample; candidate gene study</p><p>79. Sia AT, Lim Y, Lim EC, et al.: A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 109:520- 526, 2008 patient sample; candidate gene study 7</p><p>80. Oertel BG, Kettner M, Scholich K, et al.: A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J Biol Chem 284:6530-6535, 2009 healthy individuals (autopsy); candidate gene study</p><p>81. Zhang W, Chang YZ, Kan QC, et al.: CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol 66:61- 66, 2010 patient sample; candidate gene study</p><p>82. Galvan A, Skorpen F, Klepstad P, et al.: Multiple loci modulate opioid therapy response for cancer pain. Clin Cancer Res 17:4581-4587, 2011 clinical sample; GWAS</p><p>83. Campa D, Gioia A, Tomei A, et al.: Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 83:559-566, 2008 patient sample; candidate gene study</p><p>84. Coller JK, Barratt DT, Dahlen K, et al.: ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther 80:682-690, 2006 patient sample; candidate gene study</p><p>85. Crettol S, Deglon JJ, Besson J, et al.: ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 80:668-681, 2006 patient sample; candidate gene study</p><p>86. Klepstad P, Dale O, Skorpen F, et al.: Genetic variability and clinical efficacy of morphine. Acta Anaesthesiol Scand 49:902-908, 2005 review</p><p>87. Park HJ, Shinn HK, Ryu SH, et al.: Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin Pharmacol Ther 81:539-546, 2007 patient sample; candidate gene study</p><p>88. Cai W, Chen B, Tao X, et al.: Correlation of genetic polymorphism of cytochrome P4502D6 with dextromethorphan oxidative metabolism in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 17:181-184, 2000 healthy individuals; candidate gene study</p><p>89. Darbari DS, van Schaik RH, Capparelli EV, et al.: UGT2B7 promoter variant -840G>A contributes to the variability in hepatic clearance of morphine in patients with sickle cell disease. Am J Hematol 83:200-202, 2008 patient sample; candidate gene study</p><p>90. Ferrari A, Coccia CP, Bertolini A, et al.: Methadone--metabolism, pharmacokinetics and interactions. Pharmacol Res 50:551-559, 2004 review</p><p>91. Paar WD, Poche S, Gerloff J, et al.: Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 53:235-239, 1997 healthy individuals; biomolecular marker (urine)</p><p>92. Pedersen RS, Damkier P, Brosen K: Tramadol as a new probe for cytochrome P450 2D6 phenotyping: a population study. Clin Pharmacol Ther 77:458-467, 2005 healthy individuals; candidate gene study</p><p>93. Pilotto A, Seripa D, Franceschi M, et al.: Genetic susceptibility to nonsteroidal anti- inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology 133:465-471, 2007 8 patient sample; candidate gene study</p><p>94. Shiran MR, Lennard MS, Iqbal MZ, et al.: Contribution of the activities of CYP3A, CYP2D6, CYP1A2 and other potential covariates to the disposition of methadone in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol 67:29-37, 2009 patient sample; biomolecular marker (saliva and plasma)</p><p>95. Stamer UM, Musshoff F, Kobilay M, et al.: Concentrations of tramadol and O- desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82:41- 47, 2007 patient sample; candidate gene study</p><p>96. Takashima T, Murase S, Iwasaki K, et al.: Evaluation of dextromethorphan metabolism using hepatocytes from CYP2D6 poor and extensive metabolizers. Drug Metab Pharmacokinet 20:177-182, 2005 in vitro human hepatocytes; candidate gene study</p><p>97. Wang G, Zhang H, He F, et al.: Effect of the CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population. Eur J Clin Pharmacol 62:927-931, 2006 patient sample; candidate gene study</p><p>98. Zhou SF: Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet 48:689-723, 2009 review</p><p>99. Reyes-Gibby CC, Spitz M, Wu X, et al.: Cytokine genes and pain severity in lung cancer: exploring the influence of TNF-alpha-308 G/A IL6-174G/C and IL8-251T/A. Cancer Epidemiol Biomarkers Prev 16:2745-2751, 2007 patient sample; candidate gene study</p><p>100. Guimaraes AL, Correia-Silva JF, Sa AR, et al.: Investigation of functional gene polymorphisms IL-1beta, IL-6, IL-10 and TNF-alpha in individuals with recurrent aphthous stomatitis. Arch Oral Biol 52:268-272, 2007 patient sample + healthy individuals; candidate gene study (buccal swab)</p><p>101. Oen K, Malleson PN, Cabral DA, et al.: Cytokine genotypes correlate with pain and radiologically defined joint damage in patients with juvenile rheumatoid arthritis. Rheumatology (Oxford) 44:1115-1121, 2005 patient sample; candidate gene study</p><p>102. Solovieva S, Leino-Arjas P, Saarela J, et al.: Possible association of interleukin 1 gene locus polymorphisms with low back pain. Pain 109:8-19, 2004 population-based; candidate gene study</p><p>103. Olsen MB, Jacobsen LM, Schistad EI, et al.: Pain intensity the first year after lumbar disc herniation is associated with the A118G polymorphism in the opioid receptor mu 1 gene: evidence of a sex and genotype interaction. J Neurosci 32:9831-9834, 2012 patient sample; candidate gene study</p><p>104. Swaab DF: Pain and addiction, in Aminoff MJ, Boller F, Swaab DF (eds): Handbook of Clinical Neurology, Vol. 80 (3rd Series Vol. 2), The Human Hypothalamus: Basic and Clinical Aspects, Part II. Amsterdam, Elsevier, 2004, pp 373-386 review</p><p>105. Sprangers MA, Bartels M, Veenhoven R, et al.: Which patient will feel down, which will be happy? The need to study the genetic disposition of emotional states. Qual Life Res 19:1429- 1437, 2010 review 9</p><p>106. Holmes AJ, Lee PH, Hollinshead MO, et al.: Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci 32:18087-18100, 2012 healthy individuals; GWAS; saliva sample; MRI</p><p>107. Bochdanovits Z, Verhage M, Smit AB, et al.: Joint reanalysis of 29 correlated SNPs supports the role of PCLO/Piccolo as a causal risk factor for major depressive disorder. Mol Psychiatry 14:650-652, 2009 letter to Editor</p><p>108. Sullivan PF, de Geus EJ, Willemsen G, et al.: Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 14:359-375, 2009 patient sample + healthy individuals; GWAS; replication with external cohort</p><p>109. Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM, et al.: Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 13:772-785, 2008 meta-analyses</p><p>110. Adkins DE, Daw JK, McClay JL, et al.: The influence of five monoamine genes on trajectories of depressive symptoms across adolescence and young adulthood. Dev Psychopathol 24:267-285, 2012 review</p><p>111. Kao CF, Fang YS, Zhao Z, et al.: Prioritization and evaluation of depression candidate genes by combining multidimensional data resources. PLoS One 6:e18696, 2011 review</p><p>112. Jia P, Kao CF, Kuo PH, et al.: A comprehensive network and pathway analysis of candidate genes in major depressive disorder. BMC Syst Biol 5 Suppl 3:S12, 2011 review</p><p>113. Wood JG, Joyce PR, Miller AL, et al.: A polymorphism in the dopamine beta-hydroxylase gene is associated with "paranoid ideation" in patients with major depression. Biol Psychiatry 51:365-369, 2002 patient sample; candidate gene study</p><p>114. Cubells JF, Zabetian CP: Human genetics of plasma dopamine beta-hydroxylase activity: applications to research in psychiatry and neurology. Psychopharmacology (Berl) 174:463- 476, 2004 review</p><p>115. Christiansen L, Tan Q, Iachina M, et al.: Candidate gene polymorphisms in the serotonergic pathway: influence on depression symptomatology in an elderly population. Biol Psychiatry 61:223-230, 2007 population-based; candidate gene study</p><p>116. Juhasz G, Dunham JS, McKie S, et al.: The CREB1-BDNF-NTRK2 pathway in depression: multiple gene-cognition-environment interactions. Biol Psychiatry 69:762-771, 2011 population-based; candidate gene study (buccal)</p><p>117. Dunlop BW, Nemeroff CB: The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327-337, 2007 review</p><p>118. Opmeer EM, Kortekaas R, Aleman A: Depression and the role of genes involved in dopamine metabolism and signalling. Prog Neurobiol 92:112-133, 2010 review 10</p><p>119. Lawford BR, Young R, Noble EP, et al.: The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. Eur Psychiatry 21:180-185, 2006 patient sample; candidate gene study</p><p>120. Ruhe HG, Mason NS, Schene AH: Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331-359, 2007 meta-analyses</p><p>121. Galecki P, Galecka E, Maes M, et al.: The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord 138:360- 366, 2012 patient sample; candidate gene study</p><p>122. Luciano M, Lopez LM, de Moor MH, et al.: Longevity candidate genes and their association with personality traits in the elderly. Am J Med Genet B Neuropsychiatr Genet 159B:192-200, 2012 population-based; candidtae gene study; replication with external cohorts</p><p>123. Shyn SI, Shi J, Kraft JB, et al.: Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta- analysis of three studies. Mol Psychiatry 16:202-215, 2011 patient sample + healthy individuals; GWAS</p><p>124. Strohmaier J, Amelang M, Hothorn LA, et al.: The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Mol Psychiatry 18:607-613, 2013 population-based; candidate gene study; mouth wash</p><p>125. Pezawas L, Meyer-Lindenberg A, Drabant EM, et al.: 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8:828-834, 2005 patient sample + healthy individuals; candidate gene study</p><p>126. Belmaker RH, Agam G: Major depressive disorder. N Engl J Med 358:55-68, 2008 review</p><p>127. Grabe HJ, Schwahn C, Mahler J, et al.: Moderation of adult depression by the serotonin transporter promoter variant (5-HTTLPR), childhood abuse and adult traumatic events in a general population sample. Am J Med Genet B Neuropsychiatr Genet 159B:298-309, 2012 population-based; candidate gene study</p><p>128. Munafo MR, Brown SM, Hariri AR: Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry 63:852-857, 2008 meta-analyses</p><p>129. Muglia P, Tozzi F, Galwey NW, et al.: Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry 15:589-601, 2010 patient sample + healthy individuals; GWAS</p><p>130. Tsai SJ, Yeh HL, Hong CJ, et al.: Association of CHRNA4 polymorphism with depression and loneliness in elderly males. Genes Brain Behav 11:230-234, 2012 healthy individuals; candidate gene study</p><p>131. Zhang K, Yang C, Xu Y, et al.: Genetic association of the interaction between the BDNF and GSK3B genes and major depressive disorder in a Chinese population. J Neural Transm 117:393-401, 2010 patient sample + healthy individuals; candidate gene study 11</p><p>132. Kunugi H, Hashimoto R, Yoshida M, et al.: A missense polymorphism (S205L) of the low- affinity neurotrophin receptor p75NTR gene is associated with depressive disorder and attempted suicide. Am J Med Genet B Neuropsychiatr Genet 129B:44-46, 2004 patient sample + healthy individuals; candidate gene study</p><p>133. Wong ML, Dong C, Maestre-Mesa J, et al.: Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 13:800-812, 2008 patient sample + healthy individuals; candidate gene study</p><p>134. Sureshkumar R, Bharath S, Jain S, et al.: ApoE4 and late onset depression in Indian population. J Affect Disord 136:244-248, 2012 patient sample + healthy individuals; candidate gene study</p><p>135. Julian LJ, Vella L, Frankel D, et al.: ApoE alleles, depression and positive affect in multiple sclerosis. Mult Scler 15:311-315, 2009 patient sample; candidate gene study</p><p>136. Simon NM, McNamara K, Chow CW, et al.: A detailed examination of cytokine abnormalities in Major Depressive Disorder. Eur Neuropsychopharmacol 18:230-233, 2008 patient sample + healthy individuals; candidate gene study</p><p>137. Uddin M, Koenen KC, Aiello AE, et al.: Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med 41:997-1007, 2011 population-based; GWAS</p><p>138. Dowlati Y, Herrmann N, Swardfager W, et al.: A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446-457, 2010 meta-analyses</p><p>139. Holtzman S, Abbey SE, Chan C, et al.: A genetic predisposition to produce low levels of IL-10 is related to depressive symptoms: a pilot study of patients with end stage renal disease. Psychosomatics 53:155-161, 2012 patient sample + healthy individuals; candidate gene study</p><p>140. Shinozaki G, Jowsey S, Amer H, et al.: Relationship between FKBP5 polymorphisms and depression symptoms among kidney transplant recipients. Depress Anxiety 28:1111-1118, 2011 patient sample; candidate gene study</p><p>141. Bao AM, Meynen G, Swaab DF: The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531-553, 2008 review</p><p>142. Bao AM, Ruhe HG, Gao S.F., et al.: Neurotransmitters and neuropeptides in depression, in Schlaepfer T.E., Nemeroff CB (eds): Handbook of Clinical Neurology, Vol 106 (3rd series), Elsevier, 2012, pp 107-136 review</p><p>143. Brundin L, Bjorkqvist M, Petersen A, et al.: Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol 17:573-579, 2007 patient sample; biomolecular marker (cerebrospinal fluid)</p><p>144. Brundin L, Bjorkqvist M, Traskman-Bendz L, et al.: Increased orexin levels in the cerebrospinal fluid the first year after a suicide attempt. J Affect Disord 113:179-182, 2009 patient sample, biomolecular marker (cerebrospinal fluid) 12</p><p>145. Salomon RM, Ripley B, Kennedy JS, et al.: Diurnal variation of cerebrospinal fluid hypocretin- 1 (Orexin-A) levels in control and depressed subjects. Biol Psychiatry 54:96-104, 2003 patient sample + healthy individuals; biomolecular marker (cerebrospinal fluid)</p><p>146. Wang SS, Kamphuis W, Huitinga I, et al.: Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry 13:786-99, 741, 2008 patient sample + healthy individual (autopsy); candidate gene study (frozen hypothalamus)</p><p>147. Papiol S, Arias B, Gasto C, et al.: Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104:83-90, 2007 patient sample + healthy individuals; candidate gene study</p><p>148. Ishitobi Y, Nakayama S, Yamaguchi K, et al.: Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 159B:429-436, 2012 patient sample + healthy individuals; candidate gene study</p><p>149. Gass N, Ollila HM, Utge S, et al.: Contribution of adenosine related genes to the risk of depression with disturbed sleep. J Affect Disord 126:134-139, 2010 population-based, candidate gene study</p><p>150. Zhao J, Bao AM, Qi XR, et al.: Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients. J Affect Disord 138:494-502, 2012 patient sample + healthy individuals (autopsy); candidate gene study (frozen hypothalamus)</p><p>151. Girdler SS, Lindgren M, Porcu P, et al.: A history of depression in women is associated with an altered GABAergic neuroactive steroid profile. Psychoneuroendocrinology 37:543-553, 2012 patient sample + healthy individuals; biomolecular markers</p><p>152. Ryan J, Scali J, Carriere I, et al.: Oestrogen receptor polymorphisms and late-life depression. Br J Psychiatry 199:126-131, 2011 population-based; candidate gene study</p><p>153. Sankar JS, Hampson E: Testosterone levels and androgen receptor gene polymorphism predict specific symptoms of depression in young men. Gend Med 9:232-243, 2012 healthy individuals; candidate gene study (saliva)</p><p>154. Hek K, Demirkan A, Lahti J, et al.: A genome-wide association study of depressive symptoms. Biol Psychiatry 73:667-678, 2013 population-based; GWAS; replication with external cohorts</p><p>155. Agrawal A, Nelson EC, Littlefield AK, et al.: Cannabinoid receptor genotype moderation of the effects of childhood physical abuse on anhedonia and depression. Arch Gen Psychiatry 69:732-740, 2012 healthy individuals; candidate gene study; replication with external cohort</p><p>156. Gouin JP, Connors J, Kiecolt-Glaser JK, et al.: Altered expression of circadian rhythm genes among individuals with a history of depression. J Affect Disord 126:161-166, 2010 healthy individuals; candidate gene study</p><p>157. Lavebratt C, Sjoholm LK, Soronen P, et al.: CRY2 is associated with depression. PLoS One 5:e9407, 2010 patient sample + healthy individuals; candidate gene study; replication with external cohort</p><p>158. Fuchikami M, Morinobu S, Segawa M, et al.: DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6:e23881, 2011 13 patient sample + healthy individuals; candidate gene study</p><p>159. Cattaneo A, Gennarelli M, Uher R, et al.: Candidate genes expression profile associated with antidepressants response in the GENDEP Study: Differentiating between baseline 'predictors' and longitudinal 'targets'. Neuropsychopharmacology 38:377-385, 2013 patient sample + healthy individuals; candidate gene study</p><p>160. Porcelli S, Fabbri C, Serretti A: Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol 22:239-258, 2012 meta-analyses</p><p>161. Silverman MN, Sternberg EM: Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261:55- 63, 2012 review</p><p>162. Ji Y, Hebbring S, Zhu H, et al.: Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics- informed pharmacogenomics. Clin Pharmacol Ther 89:97-104, 2011 patient sample; candidate gene study; replication with external cohort</p><p>163. Fang Y, Zhang L, Zeng Z, et al.: Promoter polymorphisms of SERPINE1 are associated with the antidepressant response to depression in Alzheimer's disease. Neurosci Lett 516:217-220, 2012 patient sample; candidate gene study</p><p>164. Klumpers F, Heitland I, Oosting RS, et al.: Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle. Biol Psychol 89:277-282, 2012 healthy individuals; candidate gene study (buccal swab)</p><p>165. Osinsky R, Losch A, Hennig J, et al.: Attentional bias to negative information and 5-HTTLPR genotype interactively predict students' emotional reactivity to first university semester. Emotion 12:460-469, 2012 healthy individuals; candidate gene study (buccal swab)</p><p>166. Hartley CA, McKenna MC, Salman R, et al.: Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory. Proc Natl Acad Sci U S A 109:5493-5498, 2012 healthy individuals; candidate gene study (saliva)</p><p>167. Pergamin-Hight L, Bakermans-Kranenburg MJ, van Ijzendoorn MH, et al.: Variations in the promoter region of the serotonin transporter gene and biased attention for emotional information: a meta-analysis. Biol Psychiatry 71:373-379, 2012 meta-analyses</p><p>168. Hariri AR, Mattay VS, Tessitore A, et al.: Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400-403, 2002 healthy individuals; candidate gene study</p><p>169. Domschke K, Reif A, Weber H, et al.: Neuropeptide S receptor gene -- converging evidence for a role in panic disorder. Mol Psychiatry 16:938-948, 2011 patient sample + healthy individuals; candidate gene study; replication with external cohorts</p><p>170. Raczka KA, Gartmann N, Mechias ML, et al.: A neuropeptide S receptor variant associated with overinterpretation of fear reactions: a potential neurogenetic basis for catastrophizing. Mol Psychiatry 15:1045, 1067-1045, 1074, 2010 healthy individuals; candidate gene study 14</p><p>171. Gormanns P, Mueller NS, Ditzen C, et al.: Phenome-transcriptome correlation unravels anxiety and depression related pathways. J Psychiatr Res 45:973-979, 2011 review</p><p>172. Zhou Z, Zhu G, Hariri AR, et al.: Genetic variation in human NPY expression affects stress response and emotion. Nature 452:997-1001, 2008 various cohorts; candidate gene study</p><p>173. Thompson RJ, Parker KJ, Hallmayer JF, et al.: Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology 36:144-147, 2011 healthy individuals; candidate gene study (saliva)</p><p>174. Lan WH, Yang AC, Hwang JP, et al.: Association of MTHFR C677T polymorphism with loneliness but not depression in cognitively normal elderly males. Neurosci Lett 521:88-91, 2012 healthy individuals; candidate gene study</p><p>175. Lucht MJ, Barnow S, Sonnenfeld C, et al.: Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog Neuropsychopharmacol Biol Psychiatry 33:860-866, 2009 population-based; candidate gene study</p><p>176. Bartels M, Saviouk V, de Moor MH, et al.: Heritability and genome-wide linkage scan of subjective happiness. Twin Res Hum Genet 13:135-142, 2010 healthy individuals; blood or buccal swab sample</p><p>177. Rietveld CA, Cesarini D, Benjamin DJ, et al.: Molecular genetics and subjective well-being. Proc Natl Acad Sci U S A 110:9692-9697, 2013 population-based</p><p>178. Burgdorf J, Panksepp J: The neurobiology of positive emotions. Neurosci Biobehav Rev 30:173-187, 2006 review</p><p>179. De Neve JE: Functional polymorphism (5-HTTLPR) in the serotonin transporter gene is associated with subjective well-being: evidence from a US nationally representative sample. J Hum Genet 56:456-459, 2011 population-based; candidate gene study (saliva)</p><p>180. De Neve JE, Christakis NA, Fowler JH, et al.: Genes, economics, and hapiness. J Neurosci Psychol Econ 5:193-211, 2012 population-based; candidate gene study</p><p>181. Chen H, Pine DS, Ernst M, et al.: The MAOA gene predicts happiness in women. Prog Neuropsychopharmacol Biol Psychiatry 40C:122-125, 2012 population-based; candidate gene study (saliva)</p><p>182. Szily E, Bowen J, Unoka Z, et al.: Emotion appraisal is modulated by the genetic polymorphism of the serotonin transporter. J Neural Transm 115:819-822, 2008 healthy individuals; candidate gene study</p><p>183. Ordonana JR, Bartels M, Boomsma DI, et al.: Biological pathways and genetic mechanisms involved in social functioning. Qual Life Res 22:1189-200, 2013 review</p><p>184. Ebstein RP, Israel S, Chew SH, et al.: Genetics of human social behavior. Neuron 65:831- 844, 2010 review 15</p><p>185. Bakermans-Kranenburg MJ, van Ijzendoorn MH: Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc Cogn Affect Neurosci 3:128-134, 2008 healthy individuals; candidate gene study (cheek cells)</p><p>186. Kim HS, Sherman DK, Sasaki JY, et al.: Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proc Natl Acad Sci U S A 107:15717-15721, 2010 healthy individuals; candidate gene study (saliva or cheek cells)</p><p>187. Meyer-Lindenberg A, Domes G, Kirsch P, et al.: Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12:524-538, 2011 review</p><p>188. Rodrigues SM, Saslow LR, Garcia N, et al.: Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci U S A 106:21437-21441, 2009 healthy individuals; candidate gene study (saliva)</p><p>189. Tost H, Kolachana B, Hakimi S, et al.: A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc Natl Acad Sci U S A 107:13936-13941, 2010 healthy individuals; candidate gene study</p><p>190. Donaldson ZR, Young LJ: Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900-904, 2008 review</p><p>191. Wassink TH, Piven J, Vieland VJ, et al.: Examination of AVPR1a as an autism susceptibility gene. Mol Psychiatry 9:968-972, 2004 patient sample + healthy individuals; candidate gene study</p><p>192. Walum H, Westberg L, Henningsson S, et al.: Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc Natl Acad Sci U S A 105:14153-14156, 2008 healthy individuals; candidate gene study (mouthwash sample)</p><p>193. Meyer-Lindenberg A, Kolachana B, Gold B, et al.: Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol Psychiatry 14:968-975, 2009 patient sample; candidate gene study</p><p>194. Montag C, Brockmann EM, Lehmann A, et al.: Association between oxytocin receptor gene polymorphisms and self-rated 'empathic concern' in schizophrenia. PLoS One 7:e51882, 2012 patient sample + healthy controls; candidate gene study</p><p>195. Olff M, Frijling JL, Kubzansky LD, et al.: The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 38:1883-94, 2013 review</p><p>196. Kumsta R, Hummel E, Chen FS, et al.: Epigenetic regulation of the oxytocin receptor gene: implications for behavioral neuroscience. Front Neurosci 7:83, 2013 review</p><p>197. Belsky J, Pluess M: Genetic moderation of early child-care effects on social functioning across childhood: a developmental analysis. Child Dev 84:1209-1225, 2013 population-based; candidate gene study; buccal swab 16</p><p>198. Munafo MR, Yalcin B, Willis-Owen SA, et al.: Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol Psychiatry 63:197-206, 2008 meta-analyses; population based; candidate gene study (swab samples)</p><p>199. Marino C, Vanzin L, Giorda R, et al.: An assessment of transmission disequilibrium between quantitative measures of childhood problem behaviors and DRD2/Taql and DRD4/48bp-repeat polymorphisms. Behav Genet 34:495-502, 2004 patient sample + healthy individuals; candidate gene study</p><p>200. Godlewska BR, Olajossy-Hilkesberger L, Limon J, et al.: Ser9Gly polymorphism of the DRD3 gene is associated with worse premorbid social functioning and an earlier age of onset in female but not male schizophrenic patients. Psychiatry Res 177:266-267, 2010 patient sample; candidate gene study</p><p>201. Antypa N, Calati R, Souery D, et al.: Variation in the HTR1A and HTR2A genes and social adjustment in depressed patients. J Affect Disord 150:649-652, 2013 patient sample; candidate gene study</p><p>202. Norman GJ, Hawkley L, Luhmann M, et al.: Variation in the oxytocin receptor gene influences neurocardiac reactivity to social stress and HPA function: a population based study. Horm Behav 61:134-139, 2012 population-based; candidate gene study; saliva and blood samples</p><p>203. Lucas-Thompson RG, Holman EA: Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress. Horm Behav 63:615-624, 2013 population-based; candidate gene study, saliva sample</p><p>204. Lawford BR, McD YR, Noble EP, et al.: D2 dopamine receptor gene polymorphism: paroxetine and social functioning in posttraumatic stress disorder. Eur Neuropsychopharmacol 13:313- 320, 2003 patient sample; candidate gene study</p><p>205. Zou YF, Wang Y, Liu P, et al.: Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Hum Psychopharmacol 25:145-152, 2010 patient sample; candidate gene study</p><p>206. Bassett AS, Caluseriu O, Weksberg R, et al.: Catechol-O-methyl transferase and expression of schizophrenia in 73 adults with 22q11 deletion syndrome. Biol Psychiatry 61:1135-1140, 2007 patient sample; candidate gene study</p><p>207. Waugh CE, Dearing KF, Joormann J, et al.: Association between the catechol-O- methyltransferase Val158Met polymorphism and self-perceived social acceptance in adolescent girls. J Child Adolesc Psychopharmacol 19:395-401, 2009 healthy individuals; candidate gene study (saliva)</p><p>208. Way BM, Taylor SE, Eisenberger NI: Variation in the mu-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proc Natl Acad Sci U S A 106:15079-15084, 2009 healthy individuals; candidate gene study (oral specimen)</p><p>209. Fergusson DM, Boden JM, Horwood LJ, et al.: MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 198:457-463, 2011 population-based; candidate gene study</p><p>210. Yamamori H, Hashimoto R, Ohi K, et al.: A promoter variant in the chitinase 3-like 1 gene is associated with serum YKL-40 level and personality trait. Neurosci Lett 513:204-208, 2012 patient sample + healthy individuals; candidate gene study 17</p><p>211. Vinkhuyzen AA, Pedersen NL, Yang J, et al.: Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Transl Psychiatry 2:e102, 2012 populatioin-based + healthy individuals; GWAS</p><p>212. Amin N, Hottenga JJ, Hansell NK, et al.: Refining genome-wide linkage intervals using a meta- analysis of genome-wide association studies identifies loci influencing personality dimensions. Eur J Hum Genet 21:876-882, 2013 population-based; GWAS; replication with extrenal cohorts</p><p>213. Kim HN, Roh SJ, Sung YA, et al.: Genome-wide association study of the five-factor model of personality in young Korean women. J Hum Genet 58:667-74, 2013 population-based; GWAS; replication with external cohort</p><p>214. Luciano M, Huffman JE, Arias-Vasquez A, et al.: Genome-wide association uncovers shared genetic effects among personality traits and mood states. Am J Med Genet B Neuropsychiatr Genet 159B:684-695, 2012 population-based; GWAS; replication with external cohorts</p><p>215. Brown AA, Jensen J, Nikolova YS, et al.: Genetic variants affecting the neural processing of human facial expressions: evidence using a genome-wide functional imaging approach. Transl Psychiatry 2:e143, 2012 patient sample + healthy individuals; GWAS; replication with external cohort; fMRI</p><p>216. Matsunaga M, Isowa T, Murakami H, et al.: Association of polymorphism in the human mu- opioid receptor OPRM1 gene with proinflammatory cytokine levels and health perception. Brain Behav Immun 23:931-935, 2009 healthy individuals; candidate gene study</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages17 Page
-
File Size-