Update on Geneqol Activities

Update on Geneqol Activities

<p>1</p><p>Supplementary Information 2: References to Tables 1-7</p><p>REFERENCES</p><p>1. Barsevick A, Frost M, Zwinderman A, et al.: I'm so tired: biological and genetic mechanisms of cancer-related fatigue. Qual Life Res 19:1419-1427, 2010 review</p><p>2. Jun SE, Kohen R, Cain KC, et al.: TPH gene polymorphisms are associated with disease perception and quality of life in women with irritable bowel syndrome. Biol Res Nurs 16:95- 104, 2014 patient sample; candidate gene study</p><p>3. Segerstrom SC, Miller GE: Psychological stress and the human immune system: a meta- analytic study of 30 years of inquiry. Psychol Bull 130:601-630, 2004 meta-analysis</p><p>4. Schroecksnadel K, Fiegl M, Prassl K, et al.: Diminished quality of life in patients with cancer correlates with tryptophan degradation. J Cancer Res Clin Oncol 133:477-485, 2007 patient sample; biomolecular marker</p><p>5. Platten M, Wick W, Van den Eynde BJ: Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72:5435-5440, 2012 review</p><p>6. Fernandez-de-Las-Penas C, Cantarero-Villanueva I, Fernandez-Lao C, et al.: Influence of catechol-o-methyltransferase genotype (Val158Met) on endocrine, sympathetic nervous and mucosal immune systems in breast cancer survivors. Breast 21:199-203, 2012 patient sample; candidate gene study (saliva)</p><p>7. Lim J, Ebstein R, Tse CY, et al.: Dopaminergic polymorphisms associated with time-on-task declines and fatigue in the Psychomotor Vigilance Test. PLoS One 7:e33767, 2012 healthy individuals; candidate gene study (saliva)</p><p>8. Sloan JA, Shi Q, Lee A, et al.: Relationship between genetic markers and quality of life (QOL) in stage III colon cancer (CC) patients (pts) prior to adjuvant treatment. J Clin Oncol 30:3617, 2012 patient sample; candidate gene study</p><p>9. Sloan JA, de AM, Decker P, et al.: Genetic variations and patient-reported quality of life among patients with lung cancer. J Clin Oncol 30:1699-1704, 2012 patient sample; candidate gene study; replication with split sample</p><p>10. Sloan JA, McCleod H, Sargent D, et al.: Preliminary evidence of relationship between genetic markers and oncology patient quality of life (QOL). J Clin Oncol 22:5, 2004</p><p>11. Clement K, Langin D: Regulation of inflammation-related genes in human adipose tissue. J Intern Med 262:422-430, 2007 review</p><p>12. Illi J, Miaskowski C, Cooper B, et al.: Association between pro- and anti-inflammatory cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression. Cytokine 58:437-447, 2012 patient sample + healthy individuals; candidate gene study</p><p>13. de Raaf PJ, Sleijfer S, Lamers CH, et al.: Inflammation and fatigue dimensions in advanced cancer patients and cancer survivors: An explorative study. Cancer 118:6005-6011, 2012 patient sample; biomolecular marker 2</p><p>14. Meyers CA, Albitar M, Estey E: Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 104:788-793, 2005 patient sample; biomolecular marker</p><p>15. Kerr JR, Burke B, Petty R, et al.: Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes. J Clin Pathol 61:730-739, 2008 patient sample + healthy individuals; candidate gene study</p><p>16. Collado-Hidalgo A, Bower JE, Ganz PA, et al.: Cytokine gene polymorphisms and fatigue in breast cancer survivors: early findings. Brain Behav Immun 22:1197-1200, 2008 patient population-based; candidate gene study</p><p>17. Rausch SM, Clark MM, Patten C, et al.: Relationship between cytokine gene single nucleotide polymorphisms and symptom burden and quality of life in lung cancer survivors. Cancer 116:4103-4113, 2010 patient sample; candidate gene study</p><p>18. Miaskowski C, Dodd M, Lee K, et al.: Preliminary evidence of an association between a functional interleukin-6 polymorphism and fatigue and sleep disturbance in oncology patients and their family caregivers. J Pain Symptom Manage 40:531-544, 2010 patient sample + healthy individuals; candidate gene study</p><p>19. Ahlberg K, Ekman T, Gaston-Johansson F: Levels of fatigue compared to levels of cytokines and hemoglobin during pelvic radiotherapy: a pilot study. Biol Res Nurs 5:203-210, 2004 patient sample; biomolecular marker</p><p>20. Aouizerat BE, Dodd M, Lee K, et al.: Preliminary evidence of a genetic association between tumor necrosis factor alpha and the severity of sleep disturbance and morning fatigue. Biol Res Nurs 11:27-41, 2009 patient sample + healthy individuals; candidate gene study</p><p>21. Aspler AL, Bolshin C, Vernon SD, et al.: Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood. Behav Brain Funct 4:44, 2008 population-based; candidate gene study</p><p>22. Wang XS, Williams LA, Krishnan S, et al.: Serum sTNF-R1, IL-6, and the development of fatigue in patients with gastrointestinal cancer undergoing chemoradiation therapy. Brain Behav Immun 26:699-705, 2012 patient sample</p><p>23. Saligan LN, Kim HS: A systematic review of the association between immunogenomic markers and cancer-related fatigue. Brain Behav Immun 26:830-848, 2012 review</p><p>24. Bower JE, Ganz PA, Irwin MR, et al.: Cytokine genetic variations and fatigue among patients with breast cancer. J Clin Oncol 31:1656-1661, 2013 population-based; candidate gene study</p><p>25. Schubert C, Hong S, Natarajan L, et al.: The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav Immun 21:413-427, 2007 review</p><p>26. Piraino B, Vollmer-Conna U, Lloyd AR: Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 26:552-558, 2012 patient sample; candidate gene study</p><p>27. Schoormans D, Radonic T, de WP, et al.: Mental quality of life is related to a cytokine genetic pathway. PLoS One 7:e45126, 2012 3 patient sample; genome-wide gene expression study (skin biopsies and peripheral blood)</p><p>28. Rich TA: Symptom clusters in cancer patients and their relation to EGFR ligand modulation of the circadian axis. J Support Oncol 5:167-174, 2007 review</p><p>29. Bower JE, Ganz PA, Aziz N: Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom Med 67:277-280, 2005 patient sample; biomolecular marker (saliva)</p><p>30. Posener JA, Schildkraut JJ, Samson JA, et al.: Diurnal variation of plasma cortisol and homovanillic acid in healthy subjects. Psychoneuroendocrinology 21:33-38, 1996 healthy individuals; biomolecular marker</p><p>31. Thornton LM, Andersen BL, Blakely WP: The pain, depression, and fatigue symptom cluster in advanced breast cancer: covariation with the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Health Psychol 29:333-337, 2010 patient sample; biomolecular marker</p><p>32. von Schantz M: Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 87:513-519, 2008 review</p><p>33. Piggins HD: Human clock genes. Ann Med 34:394-400, 2002 review</p><p>34. Viola AU, Archer SN, James LM, et al.: PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613-618, 2007 healthy individuals; candidate gene study</p><p>35. Antypa N, Mandelli L, Nearchou FA, et al.: The 3111T/C polymorphism interacts with stressful life events to influence patterns of sleep in females. Chronobiol Int 29:891-897, 2012 patient sample; candidate gene study (mouthwash sample)</p><p>36. Utge SJ, Soronen P, Loukola A, et al.: Systematic analysis of circadian genes in a population- based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One 5:e9259, 2010 population-based; candidate gene study; replication with independent sample</p><p>37. Ryan JL, Carroll JK, Ryan EP, et al.: Mechanisms of cancer-related fatigue. Oncologist 12 Suppl 1:22-34, 2007 review</p><p>38. Agteresch HJ, Dagnelie PC, van der Gaast A, et al.: Randomized clinical trial of adenosine 5'- triphosphate in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 92:321- 328, 2000 patient sample; RCT; infusion of ATP</p><p>39. Seruga B, Zhang H, Bernstein LJ, et al.: Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8:887-899, 2008 review</p><p>40. Shi Q, Cleeland CS, Klepstad P, et al.: Biological pathways and genetic variables involved in pain. Qual Life Res 19:1407-1417, 2010 review</p><p>41. Fernandez-de-Las-Penas C, Fernandez-Lao C, Cantarero-Villanueva I, et al.: Catechol-O- methyltransferase genotype (Val158met) modulates cancer-related fatigue and pain sensitivity in breast cancer survivors. Breast Cancer Res Treat 133:405-412, 2012 patient sample; candidate gene study (saliva) 4</p><p>42. Jensen KB, Lonsdorf TB, Schalling M, et al.: Increased sensitivity to thermal pain following a single opiate dose is influenced by the COMT val(158)met polymorphism. PLoS One 4:e6016, 2009 healthy individuals; candidate gene study</p><p>43. Diatchenko L, Slade GD, Nackley AG, et al.: Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14:135-143, 2005 healthy individuals; candidate gene study</p><p>44. Hagen K, Pettersen E, Stovner LJ, et al.: The association between headache and Val158Met polymorphism in the catechol-O-methyltransferase gene: the HUNT Study. J Headache Pain 7:70-74, 2006 population-based; candidate gene study</p><p>45. Vargas-Alarcon G, Fragoso JM, Cruz-Robles D, et al.: Catechol-O-methyltransferase gene haplotypes in Mexican and Spanish patients with fibromyalgia. Arthritis Res Ther 9:R110, 2007 patient sample + matched healthy individuals; candidate gene study</p><p>46. Meloto CB, Serrano PO, Ribeiro-DaSilva MC, et al.: Genomics and the new perspectives for temporomandibular disorders. Arch Oral Biol 56:1181-1191, 2011 review</p><p>47. Fijal B, Perlis RH, Heinloth AN, et al.: The association of single nucleotide polymorphisms in the catechol-O-methyltransferase gene and pain scores in female patients with major depressive disorder. J Pain 11:910-5, 915, 2010 patient sample; candidate gene study</p><p>48. van Meurs JB, Uitterlinden AG, Stolk L, et al.: A functional polymorphism in the catechol-O- methyltransferase gene is associated with osteoarthritis-related pain. Arthritis Rheum 60:628- 629, 2009 population-based; candidate gene study</p><p>49. Holliday KL, Nicholl BI, Macfarlane GJ, et al.: Genetic variation in the hypothalamic-pituitary- adrenal stress axis influences susceptibility to musculoskeletal pain: results from the EPIFUND study. Ann Rheum Dis 69:556-560, 2010 population-based; candidate gene (buccal swab)</p><p>50. Finan PH, Zautra AJ, Davis MC, et al.: Genetic influences on the dynamics of pain and affect in fibromyalgia. Health Psychol 29:134-142, 2010 patient sample, candidate gene study (buccal swab)</p><p>51. Herken H, Erdal E, Mutlu N, et al.: Possible association of temporomandibular joint pain and dysfunction with a polymorphism in the serotonin transporter gene. Am J Orthod Dentofacial Orthop 120:308-313, 2001 patient sample + healthy individuals; candidate gene study</p><p>52. Kim H, Lee H, Rowan J, et al.: Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans. Mol Pain 2:24, 2006 patient sample; candidate gene study</p><p>53. Ruano G, Thompson PD, Windemuth A, et al.: Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 36:329-335, 2007 patient sample; candidate gene study</p><p>54. Lindstedt F, Lonsdorf TB, Schalling M, et al.: Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. PLoS One 6:e17752, 2011 5 healthy individuals; candidate gene study (whole blood or saliva)</p><p>55. Ortega-Hernandez OD, Cuccia M, Bozzini S, et al.: Autoantibodies, polymorphisms in the serotonin pathway, and human leukocyte antigen class II alleles in chronic fatigue syndrome: are they associated with age at onset and specific symptoms? Ann N Y Acad Sci 1173:589- 599, 2009 patient sample; candidate gene study</p><p>56. Lindstedt F, Karshikoff B, Schalling M, et al.: Serotonin-1A receptor polymorphism (rs6295) associated with thermal pain perception. PLoS One 7:e43221, 2012 healthy individuals; candidate gene study</p><p>57. Combadiere C, Godin O, Vidal C, et al.: Common CX3CR1 alleles are associated with a reduced risk of headaches. Headache 48:1061-1066, 2008 population-based; candidate gene study</p><p>58. Shabalina SA, Zaykin DV, Gris P, et al.: Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum Mol Genet 18:1037-1051, 2009 healthy individuals; candidate gene study</p><p>59. Dabby R, Sadeh M, Gilad R, et al.: Chronic non-paroxysmal neuropathic pain - Novel phenotype of mutation in the sodium channel SCN9A gene. J Neurol Sci 301:90-92, 2011 patient sample; candidate gene study</p><p>60. Reimann F, Cox JJ, Belfer I, et al.: Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci U S A 107:5148-5153, 2010 patient sample; candidate gene study; replication with external cohort</p><p>61. Guo TM, Liu M, Zhang YG, et al.: Association between Caspase-9 promoter region polymorphisms and discogenic low back pain. Connect Tissue Res 52:133-138, 2011 patient sample + matched healthy individuals; candidate gene study</p><p>62. Loggia ML, Bushnell MC, Tetreault M, et al.: Carriers of recessive WNK1/HSN2 mutations for hereditary sensory and autonomic neuropathy type 2 (HSAN2) are more sensitive to thermal stimuli. J Neurosci 29:2162-2166, 2009 patient sample + healthy individuals; candidate gene study</p><p>63. Ingle JN, Schaid DJ, Goss PE, et al.: Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J Clin Oncol 28:4674-4682, 2010 patient sample; GWAS</p><p>64. Lettre G, Sankaran VG, Bezerra MA, et al.: DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 105:11869-11874, 2008 patient sample; candidate gene study; replication with external cohort</p><p>65. Glueck CJ, McMahon RE, Bouquot JE, et al.: T-786C polymorphism of the endothelial nitric oxide synthase gene and neuralgia-inducing cavitational osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:548-553, 2010 patient sample + matched healthy individuals; candidate gene study</p><p>66. Presciuttini S, Curcio M, Chillemi R, et al.: Promoter polymorphisms of the NOS3 gene are associated with hypnotizability-dependent vascular response to nociceptive stimulation. Neurosci Lett 467:252-255, 2009 healthy individuals; candidate gene study</p><p>67. Doehring A, Antoniades C, Channon KM, et al.: Clinical genetics of functionally mild non- coding GTP cyclohydrolase 1 (GCH1) polymorphisms modulating pain and cardiovascular risk. Mutat Res 659:195-201, 2008 6 review</p><p>68. Peters MJ, Broer L, Willemen HL, et al.: Genome-wide association study meta-analysis of chronic widespread pain: evidence for involvement of the 5p15.2 region. Ann Rheum Dis 72:427-436, 2013 population-based; GWAS; meta-analyses; replication with external cohorts</p><p>69. Rakvag TT, Klepstad P, Baar C, et al.: The Val158Met polymorphism of the human catechol- O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 116:73-78, 2005 patient sample; candidate gene study</p><p>70. Rakvag TT, Ross JR, Sato H, et al.: Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol Pain 4:64, 2008 patient sample; candidate gene study</p><p>71. Ross JR, Riley J, Taegetmeyer AB, et al.: Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer 112:1390-1403, 2008 patient sample; candidate gene study</p><p>72. Nishizawa D, Fukuda K, Kasai S, et al.: Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol Psychiatry, 2012 healthy individuals; GWAS; replication analyses with external cohorts</p><p>73. Kosek E, Jensen KB, Lonsdorf TB, et al.: Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans. Mol Pain 5:37, 2009 healthy individuals; candidate gene study</p><p>74. Reyes-Gibby CC, El OB, Spitz MR, et al.: The influence of tumor necrosis factor-alpha -308 G/A and IL-6 -174 G/C on pain and analgesia response in lung cancer patients receiving supportive care. Cancer Epidemiol Biomarkers Prev 17:3262-3267, 2008 patient sample; candidate gene study</p><p>75. Bessler H, Shavit Y, Mayburd E, et al.: Postoperative pain, morphine consumption, and genetic polymorphism of IL-1beta and IL-1 receptor antagonist. Neurosci Lett 404:154-158, 2006 patient sample; candidate gene study</p><p>76. Chou WY, Wang CH, Liu PH, et al.: Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 105:334-337, 2006 patient sample; candidate gene study</p><p>77. Klepstad P, Rakvag TT, Kaasa S, et al.: The 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 48:1232-1239, 2004 patient sample; candidate gene study</p><p>78. Landau R, Kern C, Columb MO, et al.: Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women. Pain 139:5-14, 2008 patient sample; candidate gene study</p><p>79. Sia AT, Lim Y, Lim EC, et al.: A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 109:520- 526, 2008 patient sample; candidate gene study 7</p><p>80. Oertel BG, Kettner M, Scholich K, et al.: A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J Biol Chem 284:6530-6535, 2009 healthy individuals (autopsy); candidate gene study</p><p>81. Zhang W, Chang YZ, Kan QC, et al.: CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol 66:61- 66, 2010 patient sample; candidate gene study</p><p>82. Galvan A, Skorpen F, Klepstad P, et al.: Multiple loci modulate opioid therapy response for cancer pain. Clin Cancer Res 17:4581-4587, 2011 clinical sample; GWAS</p><p>83. Campa D, Gioia A, Tomei A, et al.: Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 83:559-566, 2008 patient sample; candidate gene study</p><p>84. Coller JK, Barratt DT, Dahlen K, et al.: ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther 80:682-690, 2006 patient sample; candidate gene study</p><p>85. Crettol S, Deglon JJ, Besson J, et al.: ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 80:668-681, 2006 patient sample; candidate gene study</p><p>86. Klepstad P, Dale O, Skorpen F, et al.: Genetic variability and clinical efficacy of morphine. Acta Anaesthesiol Scand 49:902-908, 2005 review</p><p>87. Park HJ, Shinn HK, Ryu SH, et al.: Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin Pharmacol Ther 81:539-546, 2007 patient sample; candidate gene study</p><p>88. Cai W, Chen B, Tao X, et al.: Correlation of genetic polymorphism of cytochrome P4502D6 with dextromethorphan oxidative metabolism in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 17:181-184, 2000 healthy individuals; candidate gene study</p><p>89. Darbari DS, van Schaik RH, Capparelli EV, et al.: UGT2B7 promoter variant -840G>A contributes to the variability in hepatic clearance of morphine in patients with sickle cell disease. Am J Hematol 83:200-202, 2008 patient sample; candidate gene study</p><p>90. Ferrari A, Coccia CP, Bertolini A, et al.: Methadone--metabolism, pharmacokinetics and interactions. Pharmacol Res 50:551-559, 2004 review</p><p>91. Paar WD, Poche S, Gerloff J, et al.: Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 53:235-239, 1997 healthy individuals; biomolecular marker (urine)</p><p>92. Pedersen RS, Damkier P, Brosen K: Tramadol as a new probe for cytochrome P450 2D6 phenotyping: a population study. Clin Pharmacol Ther 77:458-467, 2005 healthy individuals; candidate gene study</p><p>93. Pilotto A, Seripa D, Franceschi M, et al.: Genetic susceptibility to nonsteroidal anti- inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology 133:465-471, 2007 8 patient sample; candidate gene study</p><p>94. Shiran MR, Lennard MS, Iqbal MZ, et al.: Contribution of the activities of CYP3A, CYP2D6, CYP1A2 and other potential covariates to the disposition of methadone in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol 67:29-37, 2009 patient sample; biomolecular marker (saliva and plasma)</p><p>95. Stamer UM, Musshoff F, Kobilay M, et al.: Concentrations of tramadol and O- desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82:41- 47, 2007 patient sample; candidate gene study</p><p>96. Takashima T, Murase S, Iwasaki K, et al.: Evaluation of dextromethorphan metabolism using hepatocytes from CYP2D6 poor and extensive metabolizers. Drug Metab Pharmacokinet 20:177-182, 2005 in vitro human hepatocytes; candidate gene study</p><p>97. Wang G, Zhang H, He F, et al.: Effect of the CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population. Eur J Clin Pharmacol 62:927-931, 2006 patient sample; candidate gene study</p><p>98. Zhou SF: Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet 48:689-723, 2009 review</p><p>99. Reyes-Gibby CC, Spitz M, Wu X, et al.: Cytokine genes and pain severity in lung cancer: exploring the influence of TNF-alpha-308 G/A IL6-174G/C and IL8-251T/A. Cancer Epidemiol Biomarkers Prev 16:2745-2751, 2007 patient sample; candidate gene study</p><p>100. Guimaraes AL, Correia-Silva JF, Sa AR, et al.: Investigation of functional gene polymorphisms IL-1beta, IL-6, IL-10 and TNF-alpha in individuals with recurrent aphthous stomatitis. Arch Oral Biol 52:268-272, 2007 patient sample + healthy individuals; candidate gene study (buccal swab)</p><p>101. Oen K, Malleson PN, Cabral DA, et al.: Cytokine genotypes correlate with pain and radiologically defined joint damage in patients with juvenile rheumatoid arthritis. Rheumatology (Oxford) 44:1115-1121, 2005 patient sample; candidate gene study</p><p>102. Solovieva S, Leino-Arjas P, Saarela J, et al.: Possible association of interleukin 1 gene locus polymorphisms with low back pain. Pain 109:8-19, 2004 population-based; candidate gene study</p><p>103. Olsen MB, Jacobsen LM, Schistad EI, et al.: Pain intensity the first year after lumbar disc herniation is associated with the A118G polymorphism in the opioid receptor mu 1 gene: evidence of a sex and genotype interaction. J Neurosci 32:9831-9834, 2012 patient sample; candidate gene study</p><p>104. Swaab DF: Pain and addiction, in Aminoff MJ, Boller F, Swaab DF (eds): Handbook of Clinical Neurology, Vol. 80 (3rd Series Vol. 2), The Human Hypothalamus: Basic and Clinical Aspects, Part II. Amsterdam, Elsevier, 2004, pp 373-386 review</p><p>105. Sprangers MA, Bartels M, Veenhoven R, et al.: Which patient will feel down, which will be happy? The need to study the genetic disposition of emotional states. Qual Life Res 19:1429- 1437, 2010 review 9</p><p>106. Holmes AJ, Lee PH, Hollinshead MO, et al.: Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci 32:18087-18100, 2012 healthy individuals; GWAS; saliva sample; MRI</p><p>107. Bochdanovits Z, Verhage M, Smit AB, et al.: Joint reanalysis of 29 correlated SNPs supports the role of PCLO/Piccolo as a causal risk factor for major depressive disorder. Mol Psychiatry 14:650-652, 2009 letter to Editor</p><p>108. Sullivan PF, de Geus EJ, Willemsen G, et al.: Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 14:359-375, 2009 patient sample + healthy individuals; GWAS; replication with external cohort</p><p>109. Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM, et al.: Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 13:772-785, 2008 meta-analyses</p><p>110. Adkins DE, Daw JK, McClay JL, et al.: The influence of five monoamine genes on trajectories of depressive symptoms across adolescence and young adulthood. Dev Psychopathol 24:267-285, 2012 review</p><p>111. Kao CF, Fang YS, Zhao Z, et al.: Prioritization and evaluation of depression candidate genes by combining multidimensional data resources. PLoS One 6:e18696, 2011 review</p><p>112. Jia P, Kao CF, Kuo PH, et al.: A comprehensive network and pathway analysis of candidate genes in major depressive disorder. BMC Syst Biol 5 Suppl 3:S12, 2011 review</p><p>113. Wood JG, Joyce PR, Miller AL, et al.: A polymorphism in the dopamine beta-hydroxylase gene is associated with "paranoid ideation" in patients with major depression. Biol Psychiatry 51:365-369, 2002 patient sample; candidate gene study</p><p>114. Cubells JF, Zabetian CP: Human genetics of plasma dopamine beta-hydroxylase activity: applications to research in psychiatry and neurology. Psychopharmacology (Berl) 174:463- 476, 2004 review</p><p>115. Christiansen L, Tan Q, Iachina M, et al.: Candidate gene polymorphisms in the serotonergic pathway: influence on depression symptomatology in an elderly population. Biol Psychiatry 61:223-230, 2007 population-based; candidate gene study</p><p>116. Juhasz G, Dunham JS, McKie S, et al.: The CREB1-BDNF-NTRK2 pathway in depression: multiple gene-cognition-environment interactions. Biol Psychiatry 69:762-771, 2011 population-based; candidate gene study (buccal)</p><p>117. Dunlop BW, Nemeroff CB: The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327-337, 2007 review</p><p>118. Opmeer EM, Kortekaas R, Aleman A: Depression and the role of genes involved in dopamine metabolism and signalling. Prog Neurobiol 92:112-133, 2010 review 10</p><p>119. Lawford BR, Young R, Noble EP, et al.: The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. Eur Psychiatry 21:180-185, 2006 patient sample; candidate gene study</p><p>120. Ruhe HG, Mason NS, Schene AH: Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331-359, 2007 meta-analyses</p><p>121. Galecki P, Galecka E, Maes M, et al.: The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord 138:360- 366, 2012 patient sample; candidate gene study</p><p>122. Luciano M, Lopez LM, de Moor MH, et al.: Longevity candidate genes and their association with personality traits in the elderly. Am J Med Genet B Neuropsychiatr Genet 159B:192-200, 2012 population-based; candidtae gene study; replication with external cohorts</p><p>123. Shyn SI, Shi J, Kraft JB, et al.: Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta- analysis of three studies. Mol Psychiatry 16:202-215, 2011 patient sample + healthy individuals; GWAS</p><p>124. Strohmaier J, Amelang M, Hothorn LA, et al.: The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Mol Psychiatry 18:607-613, 2013 population-based; candidate gene study; mouth wash</p><p>125. Pezawas L, Meyer-Lindenberg A, Drabant EM, et al.: 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8:828-834, 2005 patient sample + healthy individuals; candidate gene study</p><p>126. Belmaker RH, Agam G: Major depressive disorder. N Engl J Med 358:55-68, 2008 review</p><p>127. Grabe HJ, Schwahn C, Mahler J, et al.: Moderation of adult depression by the serotonin transporter promoter variant (5-HTTLPR), childhood abuse and adult traumatic events in a general population sample. Am J Med Genet B Neuropsychiatr Genet 159B:298-309, 2012 population-based; candidate gene study</p><p>128. Munafo MR, Brown SM, Hariri AR: Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry 63:852-857, 2008 meta-analyses</p><p>129. Muglia P, Tozzi F, Galwey NW, et al.: Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry 15:589-601, 2010 patient sample + healthy individuals; GWAS</p><p>130. Tsai SJ, Yeh HL, Hong CJ, et al.: Association of CHRNA4 polymorphism with depression and loneliness in elderly males. Genes Brain Behav 11:230-234, 2012 healthy individuals; candidate gene study</p><p>131. Zhang K, Yang C, Xu Y, et al.: Genetic association of the interaction between the BDNF and GSK3B genes and major depressive disorder in a Chinese population. J Neural Transm 117:393-401, 2010 patient sample + healthy individuals; candidate gene study 11</p><p>132. Kunugi H, Hashimoto R, Yoshida M, et al.: A missense polymorphism (S205L) of the low- affinity neurotrophin receptor p75NTR gene is associated with depressive disorder and attempted suicide. Am J Med Genet B Neuropsychiatr Genet 129B:44-46, 2004 patient sample + healthy individuals; candidate gene study</p><p>133. Wong ML, Dong C, Maestre-Mesa J, et al.: Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 13:800-812, 2008 patient sample + healthy individuals; candidate gene study</p><p>134. Sureshkumar R, Bharath S, Jain S, et al.: ApoE4 and late onset depression in Indian population. J Affect Disord 136:244-248, 2012 patient sample + healthy individuals; candidate gene study</p><p>135. Julian LJ, Vella L, Frankel D, et al.: ApoE alleles, depression and positive affect in multiple sclerosis. Mult Scler 15:311-315, 2009 patient sample; candidate gene study</p><p>136. Simon NM, McNamara K, Chow CW, et al.: A detailed examination of cytokine abnormalities in Major Depressive Disorder. Eur Neuropsychopharmacol 18:230-233, 2008 patient sample + healthy individuals; candidate gene study</p><p>137. Uddin M, Koenen KC, Aiello AE, et al.: Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med 41:997-1007, 2011 population-based; GWAS</p><p>138. Dowlati Y, Herrmann N, Swardfager W, et al.: A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446-457, 2010 meta-analyses</p><p>139. Holtzman S, Abbey SE, Chan C, et al.: A genetic predisposition to produce low levels of IL-10 is related to depressive symptoms: a pilot study of patients with end stage renal disease. Psychosomatics 53:155-161, 2012 patient sample + healthy individuals; candidate gene study</p><p>140. Shinozaki G, Jowsey S, Amer H, et al.: Relationship between FKBP5 polymorphisms and depression symptoms among kidney transplant recipients. Depress Anxiety 28:1111-1118, 2011 patient sample; candidate gene study</p><p>141. Bao AM, Meynen G, Swaab DF: The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531-553, 2008 review</p><p>142. Bao AM, Ruhe HG, Gao S.F., et al.: Neurotransmitters and neuropeptides in depression, in Schlaepfer T.E., Nemeroff CB (eds): Handbook of Clinical Neurology, Vol 106 (3rd series), Elsevier, 2012, pp 107-136 review</p><p>143. Brundin L, Bjorkqvist M, Petersen A, et al.: Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol 17:573-579, 2007 patient sample; biomolecular marker (cerebrospinal fluid)</p><p>144. Brundin L, Bjorkqvist M, Traskman-Bendz L, et al.: Increased orexin levels in the cerebrospinal fluid the first year after a suicide attempt. J Affect Disord 113:179-182, 2009 patient sample, biomolecular marker (cerebrospinal fluid) 12</p><p>145. Salomon RM, Ripley B, Kennedy JS, et al.: Diurnal variation of cerebrospinal fluid hypocretin- 1 (Orexin-A) levels in control and depressed subjects. Biol Psychiatry 54:96-104, 2003 patient sample + healthy individuals; biomolecular marker (cerebrospinal fluid)</p><p>146. Wang SS, Kamphuis W, Huitinga I, et al.: Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry 13:786-99, 741, 2008 patient sample + healthy individual (autopsy); candidate gene study (frozen hypothalamus)</p><p>147. Papiol S, Arias B, Gasto C, et al.: Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104:83-90, 2007 patient sample + healthy individuals; candidate gene study</p><p>148. Ishitobi Y, Nakayama S, Yamaguchi K, et al.: Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 159B:429-436, 2012 patient sample + healthy individuals; candidate gene study</p><p>149. Gass N, Ollila HM, Utge S, et al.: Contribution of adenosine related genes to the risk of depression with disturbed sleep. J Affect Disord 126:134-139, 2010 population-based, candidate gene study</p><p>150. Zhao J, Bao AM, Qi XR, et al.: Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients. J Affect Disord 138:494-502, 2012 patient sample + healthy individuals (autopsy); candidate gene study (frozen hypothalamus)</p><p>151. Girdler SS, Lindgren M, Porcu P, et al.: A history of depression in women is associated with an altered GABAergic neuroactive steroid profile. Psychoneuroendocrinology 37:543-553, 2012 patient sample + healthy individuals; biomolecular markers</p><p>152. Ryan J, Scali J, Carriere I, et al.: Oestrogen receptor polymorphisms and late-life depression. Br J Psychiatry 199:126-131, 2011 population-based; candidate gene study</p><p>153. Sankar JS, Hampson E: Testosterone levels and androgen receptor gene polymorphism predict specific symptoms of depression in young men. Gend Med 9:232-243, 2012 healthy individuals; candidate gene study (saliva)</p><p>154. Hek K, Demirkan A, Lahti J, et al.: A genome-wide association study of depressive symptoms. Biol Psychiatry 73:667-678, 2013 population-based; GWAS; replication with external cohorts</p><p>155. Agrawal A, Nelson EC, Littlefield AK, et al.: Cannabinoid receptor genotype moderation of the effects of childhood physical abuse on anhedonia and depression. Arch Gen Psychiatry 69:732-740, 2012 healthy individuals; candidate gene study; replication with external cohort</p><p>156. Gouin JP, Connors J, Kiecolt-Glaser JK, et al.: Altered expression of circadian rhythm genes among individuals with a history of depression. J Affect Disord 126:161-166, 2010 healthy individuals; candidate gene study</p><p>157. Lavebratt C, Sjoholm LK, Soronen P, et al.: CRY2 is associated with depression. PLoS One 5:e9407, 2010 patient sample + healthy individuals; candidate gene study; replication with external cohort</p><p>158. Fuchikami M, Morinobu S, Segawa M, et al.: DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6:e23881, 2011 13 patient sample + healthy individuals; candidate gene study</p><p>159. Cattaneo A, Gennarelli M, Uher R, et al.: Candidate genes expression profile associated with antidepressants response in the GENDEP Study: Differentiating between baseline 'predictors' and longitudinal 'targets'. Neuropsychopharmacology 38:377-385, 2013 patient sample + healthy individuals; candidate gene study</p><p>160. Porcelli S, Fabbri C, Serretti A: Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol 22:239-258, 2012 meta-analyses</p><p>161. Silverman MN, Sternberg EM: Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261:55- 63, 2012 review</p><p>162. Ji Y, Hebbring S, Zhu H, et al.: Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics- informed pharmacogenomics. Clin Pharmacol Ther 89:97-104, 2011 patient sample; candidate gene study; replication with external cohort</p><p>163. Fang Y, Zhang L, Zeng Z, et al.: Promoter polymorphisms of SERPINE1 are associated with the antidepressant response to depression in Alzheimer's disease. Neurosci Lett 516:217-220, 2012 patient sample; candidate gene study</p><p>164. Klumpers F, Heitland I, Oosting RS, et al.: Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle. Biol Psychol 89:277-282, 2012 healthy individuals; candidate gene study (buccal swab)</p><p>165. Osinsky R, Losch A, Hennig J, et al.: Attentional bias to negative information and 5-HTTLPR genotype interactively predict students' emotional reactivity to first university semester. Emotion 12:460-469, 2012 healthy individuals; candidate gene study (buccal swab)</p><p>166. Hartley CA, McKenna MC, Salman R, et al.: Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory. Proc Natl Acad Sci U S A 109:5493-5498, 2012 healthy individuals; candidate gene study (saliva)</p><p>167. Pergamin-Hight L, Bakermans-Kranenburg MJ, van Ijzendoorn MH, et al.: Variations in the promoter region of the serotonin transporter gene and biased attention for emotional information: a meta-analysis. Biol Psychiatry 71:373-379, 2012 meta-analyses</p><p>168. Hariri AR, Mattay VS, Tessitore A, et al.: Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400-403, 2002 healthy individuals; candidate gene study</p><p>169. Domschke K, Reif A, Weber H, et al.: Neuropeptide S receptor gene -- converging evidence for a role in panic disorder. Mol Psychiatry 16:938-948, 2011 patient sample + healthy individuals; candidate gene study; replication with external cohorts</p><p>170. Raczka KA, Gartmann N, Mechias ML, et al.: A neuropeptide S receptor variant associated with overinterpretation of fear reactions: a potential neurogenetic basis for catastrophizing. Mol Psychiatry 15:1045, 1067-1045, 1074, 2010 healthy individuals; candidate gene study 14</p><p>171. Gormanns P, Mueller NS, Ditzen C, et al.: Phenome-transcriptome correlation unravels anxiety and depression related pathways. J Psychiatr Res 45:973-979, 2011 review</p><p>172. Zhou Z, Zhu G, Hariri AR, et al.: Genetic variation in human NPY expression affects stress response and emotion. Nature 452:997-1001, 2008 various cohorts; candidate gene study</p><p>173. Thompson RJ, Parker KJ, Hallmayer JF, et al.: Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology 36:144-147, 2011 healthy individuals; candidate gene study (saliva)</p><p>174. Lan WH, Yang AC, Hwang JP, et al.: Association of MTHFR C677T polymorphism with loneliness but not depression in cognitively normal elderly males. Neurosci Lett 521:88-91, 2012 healthy individuals; candidate gene study</p><p>175. Lucht MJ, Barnow S, Sonnenfeld C, et al.: Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog Neuropsychopharmacol Biol Psychiatry 33:860-866, 2009 population-based; candidate gene study</p><p>176. Bartels M, Saviouk V, de Moor MH, et al.: Heritability and genome-wide linkage scan of subjective happiness. Twin Res Hum Genet 13:135-142, 2010 healthy individuals; blood or buccal swab sample</p><p>177. Rietveld CA, Cesarini D, Benjamin DJ, et al.: Molecular genetics and subjective well-being. Proc Natl Acad Sci U S A 110:9692-9697, 2013 population-based</p><p>178. Burgdorf J, Panksepp J: The neurobiology of positive emotions. Neurosci Biobehav Rev 30:173-187, 2006 review</p><p>179. De Neve JE: Functional polymorphism (5-HTTLPR) in the serotonin transporter gene is associated with subjective well-being: evidence from a US nationally representative sample. J Hum Genet 56:456-459, 2011 population-based; candidate gene study (saliva)</p><p>180. De Neve JE, Christakis NA, Fowler JH, et al.: Genes, economics, and hapiness. J Neurosci Psychol Econ 5:193-211, 2012 population-based; candidate gene study</p><p>181. Chen H, Pine DS, Ernst M, et al.: The MAOA gene predicts happiness in women. Prog Neuropsychopharmacol Biol Psychiatry 40C:122-125, 2012 population-based; candidate gene study (saliva)</p><p>182. Szily E, Bowen J, Unoka Z, et al.: Emotion appraisal is modulated by the genetic polymorphism of the serotonin transporter. J Neural Transm 115:819-822, 2008 healthy individuals; candidate gene study</p><p>183. Ordonana JR, Bartels M, Boomsma DI, et al.: Biological pathways and genetic mechanisms involved in social functioning. Qual Life Res 22:1189-200, 2013 review</p><p>184. Ebstein RP, Israel S, Chew SH, et al.: Genetics of human social behavior. Neuron 65:831- 844, 2010 review 15</p><p>185. Bakermans-Kranenburg MJ, van Ijzendoorn MH: Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc Cogn Affect Neurosci 3:128-134, 2008 healthy individuals; candidate gene study (cheek cells)</p><p>186. Kim HS, Sherman DK, Sasaki JY, et al.: Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proc Natl Acad Sci U S A 107:15717-15721, 2010 healthy individuals; candidate gene study (saliva or cheek cells)</p><p>187. Meyer-Lindenberg A, Domes G, Kirsch P, et al.: Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12:524-538, 2011 review</p><p>188. Rodrigues SM, Saslow LR, Garcia N, et al.: Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci U S A 106:21437-21441, 2009 healthy individuals; candidate gene study (saliva)</p><p>189. Tost H, Kolachana B, Hakimi S, et al.: A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc Natl Acad Sci U S A 107:13936-13941, 2010 healthy individuals; candidate gene study</p><p>190. Donaldson ZR, Young LJ: Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900-904, 2008 review</p><p>191. Wassink TH, Piven J, Vieland VJ, et al.: Examination of AVPR1a as an autism susceptibility gene. Mol Psychiatry 9:968-972, 2004 patient sample + healthy individuals; candidate gene study</p><p>192. Walum H, Westberg L, Henningsson S, et al.: Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc Natl Acad Sci U S A 105:14153-14156, 2008 healthy individuals; candidate gene study (mouthwash sample)</p><p>193. Meyer-Lindenberg A, Kolachana B, Gold B, et al.: Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol Psychiatry 14:968-975, 2009 patient sample; candidate gene study</p><p>194. Montag C, Brockmann EM, Lehmann A, et al.: Association between oxytocin receptor gene polymorphisms and self-rated 'empathic concern' in schizophrenia. PLoS One 7:e51882, 2012 patient sample + healthy controls; candidate gene study</p><p>195. Olff M, Frijling JL, Kubzansky LD, et al.: The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 38:1883-94, 2013 review</p><p>196. Kumsta R, Hummel E, Chen FS, et al.: Epigenetic regulation of the oxytocin receptor gene: implications for behavioral neuroscience. Front Neurosci 7:83, 2013 review</p><p>197. Belsky J, Pluess M: Genetic moderation of early child-care effects on social functioning across childhood: a developmental analysis. Child Dev 84:1209-1225, 2013 population-based; candidate gene study; buccal swab 16</p><p>198. Munafo MR, Yalcin B, Willis-Owen SA, et al.: Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol Psychiatry 63:197-206, 2008 meta-analyses; population based; candidate gene study (swab samples)</p><p>199. Marino C, Vanzin L, Giorda R, et al.: An assessment of transmission disequilibrium between quantitative measures of childhood problem behaviors and DRD2/Taql and DRD4/48bp-repeat polymorphisms. Behav Genet 34:495-502, 2004 patient sample + healthy individuals; candidate gene study</p><p>200. Godlewska BR, Olajossy-Hilkesberger L, Limon J, et al.: Ser9Gly polymorphism of the DRD3 gene is associated with worse premorbid social functioning and an earlier age of onset in female but not male schizophrenic patients. Psychiatry Res 177:266-267, 2010 patient sample; candidate gene study</p><p>201. Antypa N, Calati R, Souery D, et al.: Variation in the HTR1A and HTR2A genes and social adjustment in depressed patients. J Affect Disord 150:649-652, 2013 patient sample; candidate gene study</p><p>202. Norman GJ, Hawkley L, Luhmann M, et al.: Variation in the oxytocin receptor gene influences neurocardiac reactivity to social stress and HPA function: a population based study. Horm Behav 61:134-139, 2012 population-based; candidate gene study; saliva and blood samples</p><p>203. Lucas-Thompson RG, Holman EA: Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress. Horm Behav 63:615-624, 2013 population-based; candidate gene study, saliva sample</p><p>204. Lawford BR, McD YR, Noble EP, et al.: D2 dopamine receptor gene polymorphism: paroxetine and social functioning in posttraumatic stress disorder. Eur Neuropsychopharmacol 13:313- 320, 2003 patient sample; candidate gene study</p><p>205. Zou YF, Wang Y, Liu P, et al.: Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Hum Psychopharmacol 25:145-152, 2010 patient sample; candidate gene study</p><p>206. Bassett AS, Caluseriu O, Weksberg R, et al.: Catechol-O-methyl transferase and expression of schizophrenia in 73 adults with 22q11 deletion syndrome. Biol Psychiatry 61:1135-1140, 2007 patient sample; candidate gene study</p><p>207. Waugh CE, Dearing KF, Joormann J, et al.: Association between the catechol-O- methyltransferase Val158Met polymorphism and self-perceived social acceptance in adolescent girls. J Child Adolesc Psychopharmacol 19:395-401, 2009 healthy individuals; candidate gene study (saliva)</p><p>208. Way BM, Taylor SE, Eisenberger NI: Variation in the mu-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proc Natl Acad Sci U S A 106:15079-15084, 2009 healthy individuals; candidate gene study (oral specimen)</p><p>209. Fergusson DM, Boden JM, Horwood LJ, et al.: MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 198:457-463, 2011 population-based; candidate gene study</p><p>210. Yamamori H, Hashimoto R, Ohi K, et al.: A promoter variant in the chitinase 3-like 1 gene is associated with serum YKL-40 level and personality trait. Neurosci Lett 513:204-208, 2012 patient sample + healthy individuals; candidate gene study 17</p><p>211. Vinkhuyzen AA, Pedersen NL, Yang J, et al.: Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Transl Psychiatry 2:e102, 2012 populatioin-based + healthy individuals; GWAS</p><p>212. Amin N, Hottenga JJ, Hansell NK, et al.: Refining genome-wide linkage intervals using a meta- analysis of genome-wide association studies identifies loci influencing personality dimensions. Eur J Hum Genet 21:876-882, 2013 population-based; GWAS; replication with extrenal cohorts</p><p>213. Kim HN, Roh SJ, Sung YA, et al.: Genome-wide association study of the five-factor model of personality in young Korean women. J Hum Genet 58:667-74, 2013 population-based; GWAS; replication with external cohort</p><p>214. Luciano M, Huffman JE, Arias-Vasquez A, et al.: Genome-wide association uncovers shared genetic effects among personality traits and mood states. Am J Med Genet B Neuropsychiatr Genet 159B:684-695, 2012 population-based; GWAS; replication with external cohorts</p><p>215. Brown AA, Jensen J, Nikolova YS, et al.: Genetic variants affecting the neural processing of human facial expressions: evidence using a genome-wide functional imaging approach. Transl Psychiatry 2:e143, 2012 patient sample + healthy individuals; GWAS; replication with external cohort; fMRI</p><p>216. Matsunaga M, Isowa T, Murakami H, et al.: Association of polymorphism in the human mu- opioid receptor OPRM1 gene with proinflammatory cytokine levels and health perception. Brain Behav Immun 23:931-935, 2009 healthy individuals; candidate gene study</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us