<p> 1</p><p>Coexistence and chaos in complex ecologies</p><p>J. C. Sprott, J. A. Vano, J. C. Wildenberg, M. B. Anderson & J. K. Noel</p><p>Departments of Physics and Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA</p><p>An ongoing debate1,2 among ecologists involves the observation that complex and diverse ecologies are relatively stable3-5, whereas most models predict instability and extinction of most species6-8. Furthermore, erratic fluctuations are common and are usually attributed to random external influences, but they may be evidence of chaos. While laboratory experiments with flour beetles do suggest chaos9,10, ecologists have yet to document an unequivocal example of chaos in nature11, perhaps because of dynamical complexity and measurement limitations. One difficulty with most simple models is that chaos tends to occur over a relatively narrow range of parameters, bounded on one side by stable behaviour and on the other by extinction. Here we show that a simple model with realistic and purely deterministic adaptation produces systems in which most species coexist with weakly chaotic fluctuations independent of the initial conditions. The proposed mechanism offers an explanation for the observed biodiversity and at least some of the fluctuations and unpredictability, and it suggests why it may be difficult to stabilize such systems by human intervention.</p><p>Many different mathematical models12 have been used to study the dynamics of interacting species or agents in a variety of different contexts and systems. We choose here a variant of the generalized Lotka-Volterra equations13,14 because our aim is to show that the observed results are very general and because the chosen model can be viewed as the first approximation in a Taylor series expansion for a wide class of models15. 2</p><p>We consider a system consisting of N competing species with population xi for i = 1 to N satisfying</p><p>N dxi ri xi (1 aij x j ) (1) dt j1 where all the biology (economics, sociology, etc.) is contained in the vector of growth rates ri and the matrix of interactions aij, all elements of which are positive to indicate competition. The element aij describes the average extent to which (members of) species i competes with (members of) species j. Note that as any given species approaches extinction, the averaging of the aij elements for this species will occur over smaller and smaller populations and hence more variability becomes possible and the model breaks down.</p><p>In general, one expects the linear growth rates ri to be different for each species, but Coste et al.16 have shown that any N-dimensional Lotka-Volterra system with unequal growth rates can be extended to an equivalent (N + 1)-dimensional system with equal growth rates. Since we are concerned with high-dimensional systems, we take ri = 1 for 1 ≤ i ≤ N in the interest of simplicity. Without further loss of generality, we can take the self-interaction terms aii equal to unity, which is equivalent to measuring xi in units of its carrying capacity in the absence of the other species. Taking all the aij positive amounts to ignoring mutualism and the effect of varying individual prey populations on the predators, but it guarantees that the solutions remain bounded in the range 0 to 1, and the results are not substantially altered if some of the aij are negative. </p><p>For competitive systems, chaos is not possible with fewer than four species. For larger ecologies, to get a sense of the rarity of parameter values that lead to chaotic solutions, note that choosing aij from a random exponential distribution (so as to have a broad spectrum of positive values) with mean 1.0, with N = 4 leads to chaotic solutions with all species coexisting in only about 1 in 105 cases for a sample of 106 cases, and for 3</p><p>N = 5 only 1 in 4105 cases. Coexisting chaotic systems for realistically large N ( 100) are vanishingly rare and almost impossible to find in such a random search, although work of Smale17 guarantees their existence. The conditions for coexistence (an equilibrium with all xi positive) and for chaos (the equilibrium being locally unstable) are somewhat mutually exclusive and occur in very small regions of this vast space of parameters.</p><p>Presumably nature does not choose randomly from all possible ecologies, but instead individual species are adapting to their environment so as to enhance their survival. While many popular models assume extinction when a species drops below a critical level18,19 or modify the basic equations to prevent such extinction20, we believe there is considerable justification to instead consider models in which adaptation occurs at these points. The individuals in a nearly extinct species are presumably the most fit and are those best able to survive by finding alternate resources and by evading their predators. Thus, as a species approaches extinction, the increased variability of the aij coefficients in Eq. (1) along with the effects of directional selection naturally lead to a shift in the aij coefficients. Also, when the population of a species becomes too small its predators may find it too inefficient to prey upon. Finally, the model could be interpreted as species becoming extinct and being replaced with new similar (perhaps mutated) species that are less susceptible to the prevailing competition21,22. We model this process as follows: </p><p>–6 Whenever a species drops below some preset value (say xi < 10 ), the aij interactions corresponding to competition with that species are permanently reduced in proportion to xj until the decline is arrested. In addition to this species-specific adaptation, all the off-diagonal elements in the matrix are slowly and proportionately increased to model general adaptation of the entire ecosystem over time toward enhanced competition or to model a slowly increasing environmental stress such as 4</p><p> climate change or human encroachment23. In this way, the system is guaranteed to have all N species coexisting with near optimal fitness. The details of the procedure are not critical but are described in the Methods section. Note that this model is purely deterministic (no stochastic component) even while it is adapting, and thus any persistent aperiodic fluctuations are evidence of deterministic chaos. In addition to its ecological plausibility, the method provides a powerful numerical algorithm for finding the rare chaotic solutions for large N.</p><p>Such a system slowly evolves into one that is weakly chaotic with a typical largest Lyapunov exponent of 0.001 ± 0.001, whereupon it remains chaotic with all or most of the species coexisting even if the adaptation mechanism described above is turned off. The Lyapunov exponent is a measure of the sensitivity to initial conditions, with a positive value signifying chaos. Abrupt or premature termination of the adaptation mechanism, however, may result in the extinction a few species. </p><p>Figure 1 shows the evolution of the largest Lyapunov exponent along with the total biomass and biodiversity (defined in the Methods section) for a typical highly competitive case that starts with most of the 100 species on the verge of extinction and strongly chaotic dynamics. As it evolves, the largest Lyapunov exponent generally decreases but remains mostly positive, while the biomass and biodiversity increase. Fluctuations in the biodiversity are suggestive of sporadic volatility and punctuated </p><p>24 equilibria . A similar final state is reached if the initial aij values are small, giving a high initial degree of coexistence and stability with an increasing Lyapunov exponent. </p><p>Figure 2 shows the chaotic fluctuations in the total biomass and biodiversity for a typical such system with N = 100 after adaptation has been turned off. Note the very different time scales for the adaptation in Fig. 1 and the fluctuations in Fig. 2. Figure 2 can be viewed as a slice of the dynamics in Fig. 1 over a short time scale where 5</p><p> adaptation is negligible. Fluctuations in the population of individual species are much larger than in the total biomass. </p><p>Figure 3 shows a portion of the strange attractor for the same system projected onto the space of total biomass and biodiversity. The dimension of the attractor is about 6.3 with two positive Lyapunov exponents, making it hyperchaotic, although only weakly so with a largest Lyapunov exponent of about 0.0021. This value implies that the system has memory and predictability on the time scale of 500 growth times for a typical species.</p><p>There does not appear to be a unique distribution of aij toward which the model evolves, suggesting that a wide variety of weakly chaotic ecologies is possible, although the mean value of the matrix elements for the case in Fig. 2 and 3 is about 0.38, which is typical for cases with N = 100. Since these systems are fully connected with relatively large connection strengths, they violate the May-Wigner stability condition25, which states that a network whose stability matrix contains elements from a normal distribution with mean zero and variance σ2 is almost certainly stable if NCσ2 < 1, where the connectivity C is the probability that a matrix element is nonzero. We have generated model ecologies with up to 400 surviving species by this method.</p><p>Presumably the evolution method would work for almost any network model characterized by a matrix of interactions between its agents, and it is not restricted to models of ecology. Other networks that involve competition for resources and that are subject to crashes include financial markets, the electrical power grid, the Internet, traffic flow, and the brain. It is likely that all these systems are pushed toward a weakly chaotic dynamic by a mechanism similar to the one described here, and that such a state is relatively robust to modest disturbances, either intentional or unintentional. This state has been called “the edge of chaos”26, and it provides the condition under which 6</p><p> complex systems exhibit adaptation, self-organization, scale invariance, self-organized criticality, and similar features that characterize dissipative systems that are driven far from equilibrium by the throughput of energy or some equivalent quantity. Thus models of this type are ripe for further study and detailed comparison with the corresponding natural systems. </p><p>Methods</p><p>Equation (1) is solved by a fourth-order Runge-Kutta method with a fixed step size of 0.05. Initial conditions are not critical, and they can be either random in the range 0 to 1 or purely deterministic. Initially the elements aij are taken from an exponential distribution with mean 1, although any distribution of positive definite values will suffice. The system converges fastest to the weakly chaotic state if the mean aij is close to the desired final value, which is typically on the order of 10 / N . A time on the order of t = 106 is typically required to reach a state that is chaotic in the absence of adaptation.</p><p>–6 –6 At each iteration for which any xi falls below 10 , xi is clamped at 10 and its matrix elements aij are replaced with aij(1 – ε1xj) for j = 1 to N and j i. Furthermore, all the off-diagonal elements of the matrix are increased by the factor (1 + ε2) every 20 iterations. The values are not critical, but they should be small and are here taken as ε1 =</p><p>–4 –6 10 and ε2 = 10 . There may be some advantage to starting with relatively large ε values and slowly reducing them in the spirit of simulated annealing.</p><p>The largest Lyapunov exponent is calculated by the method27 in which an arbitrary perturbation is advanced forward in time with a renormalization of the perturbation size, but not direction, at each time step. The exponent is calculated from the logarithm of the growth rate averaged along the orbit. The spectrum of N Lyapunov exponents is calculated independently by integrating the Jacobian matrix of partial derivatives along 7</p><p> the orbit with a modified Gram-Schmidt orthonormalization at each time step28. The dimension of the strange attractor is determined from the spectrum of Lyapunov exponents using the Kaplan-Yorke conjecture29. </p><p>The total biomass is defined as</p><p>1 N M xi (2) N i1 and the biodiversity is defined as </p><p>1 N x D 1 i 1 (3) 2(N 1) i1 M so that each is a dimensionless number30 in the range of 0 to 1. The biomass is unity if all species are at their carrying capacity in the absence of intra-species competition. The biodiversity is zero if all but one species are extinct and unity if all species are equally abundant.</p><p>Received …</p><p>1. Pimm, S. L. The Balance of Nature? (Chicago University Press, 1991).</p><p>2. McCann, K. S. The diversity-stability debate. Nature 405, 228-233 (2000).</p><p>3. Odum, E. P. Fundamentals of Ecology (Saunders, Philadelphia, 1953).</p><p>4. MacArthur, R. H. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533-536 (1955).</p><p>5. Elton, C. S. Ecology of Invasions by Animals and Plants (Chapman & Hall, London, 1958).</p><p>6. Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784 (1970). 8</p><p>7. May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 1973).</p><p>8. Pimm, S. L. & Lawton, J. H. On feeding on more than one trophic level. Nature 275, 542-544 (1978).</p><p>9. Godfray, C. & Hassell, M. Chaotic beetles. Science 275, 323-324 (1997).</p><p>10. Constantino, R. F., Desharnais, Cushing, J. M., & Dennis, B. Chaotic dynamics in an insect population. Science 275, 389-391 (1997). </p><p>11. Zimmer, C. Life after chaos. Science 284, 83-86 (1999).</p><p>12. Murray, J. D. Mathematical Biology (Springer, Berlin, 1993).</p><p>13. Lotka, A. J. Elements of Physical Biology (Williams and Wilkins: Baltimore, 1925).</p><p>14. Volterra, V. Variazioni e fluttuazioni del numero d’individui in specie anamali conviventi. Memorie dell’Academia dei Lincei 2, 31-113 (1926).</p><p>15. MacArthur, R. H. Species packing and competitive equilibrium for many species. Theor. Pop. Biol. 1, 1-11 (1970). </p><p>16. Coste, J., Peyraud, J. & Coullet, P. Asymptotic behaviors in the dynamics of competing species. SIAM J. Appl. Math. 36, 516-543 (1979).</p><p>17. Smale, S. On the differential equations of species in competition. J. Math. Biology 3, 5-7 (1976).</p><p>18. Holling, C. S. Adaptive Environmental Assessment and Management (John Wiley and Sons: London, 1978).</p><p>19. Tokita, K. & Yasutomi, A. Emergence of a complex and stable network in a model ecosystem with extinction and mutation. Theor. Pop. Biol. 63, 131-146 (2003).</p><p>20. Dimitrova, Z. I. & Vitanov, N. K. Adaptation and its impact on the dynamics of a system of three competing populations. Physica A 300, 91-115 (2001). 9</p><p>21. Ginzburg, L. R., Akçakaya, H. R. & Kim, J. Evolution of community structure: Competition. J. Theor. Biol. 133, 513-523 (1988).</p><p>22. Happel, R. & Stadler, P. F. The evolution of diversity in replicator networks. J. Theor. Biol. 195, 329-338 (1998).</p><p>23. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of the Earth’s ecosystems. Science 277, 494-499 (1977).</p><p>24. Gould, S. J. & Eldridge, N. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 3, 115-151 (1977).</p><p>25. Hastings, H. M. Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics. J. Theo. Biol. 97, 155 (1982).</p><p>26. Waldrop, M. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster: New York, 1992).</p><p>27. Sprott, J. C. Chaos and Time-Series Analysis (Oxford University Press, 2003), pp. 116-117.</p><p>28. Barreira, L. & Pesin, Y. B. Lyapunov Exponents and Smooth Ergodic Theory (American Mathematical Society: Providence, RI, 2002).</p><p>29. Kaplan, J. & Yorke, J. Chaotic behavior of multidimensional difference equations. In Functional Differential Equations and Approximation of Fixed Points, Lecture Notes in Mathematics, Vol. 730 (ed. H. –O. Peitgen & H. –O. Walther), (Springer: Berlin, 1979), pp. 228-237.</p><p>30. Sprott, J. C. Competition with evolution in ecology and finance. Physics Letters A 325, 329-333 (2004).</p><p>Supplementary Information accompanies the paper on Nature’s website (http://www.nature.com). 10</p><p>Acknowledgments We thank D. J. Albers, R. S. Chapman, M. W. Hirsch, and J. W. Robbin for useful discussion.</p><p>Competing interests statement The authors declare that they have no competing financial interests.</p><p>Correspondence and requests for materials should be addressed to J.C.S. (e-mail: [email protected]). 11</p><p>Figure 1 Evolution of the largest Lyapunov exponent (0.02 full scale), total biomass (0.05 full scale), and biodiversity (1 full scale) showing how a typical system with 100 species slowly evolves toward a weakly chaotic state with high diversity and then remains there with fluctuations in the biodiversity suggestive of sporadic volatility and punctuated equilibria. 12</p><p>Figure 2 Typical chaotic fluctuations in the total biomass and biodiversity for a system with 100 species after adaptation has been turned off. 13</p><p>Figure 3 A portion of the strange attractor for the same typical system as in Fig. 2 with 100 species after adaptation has been turned off.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-