<p> Section 4 Inverse Matrix </p><p>1. Definition:</p><p>Definition of inverse matrix: An n n matrix A is called nonsingular or invertible if there exists an n n matrix B such that </p><p>, AB BA I n</p><p> n n where I n is a identity matrix. The matrix B is called an inverse of A. If there exists no such matrix B, then A is called singular or noninvertible. is called a odd permutation. </p><p>Theorem: If A is an invertible matrix, then its inverse is unique. </p><p>[proof:] Suppose B and C are inverses of A. Then,</p><p>BA CA I n B BI n B(AC) (BA)C I nC C .</p><p>Note: Since the inverse of a nonsingular matrix A is unique, we denoted the inverse of A as A1 .</p><p>Note: If A is not a square matrix, then there might be more than one matrix L such that LA I (or AL I) . there might be some matrix U such that </p><p>1 UA I but AU I</p><p>Example:</p><p>Let </p><p> 1 1 A 1 0 . 3 1</p><p>Then, there are infinite number of matrices L such that LA I , for example 1 3 1 4 15 4 L or L . 2 5 1 7 25 6 1 3 1 As L , 2 5 1</p><p> 3 8 2 LA I but AL 1 3 1 0 . 1 4 2 </p><p>2. Computation of A1 :</p><p>1. Using Gauss-Jordan reduction:</p><p>The procedure for computing the inverse of a n n matrix A:</p><p>1. Form the n 2n augmented matrix </p><p>2 a11 a12 ⋯ a1n ⋮ 1 0 ⋯ 0 a21 a22 ⋯ a2n ⋮ 0 1 ⋯ 0 A ⋮ I n ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ an1 an2 ⋯ ann ⋮ 0 0 ⋯ 1 and transform the augmented matrix to the matrix C ⋮ D in reduced row echelon form via elementary row operations. </p><p>2. If 1 (a) C I n , then A D . 1 (b) C I n , then A is singular and A does not exist. </p><p>Example:</p><p> 1 1 2 To find the inverse of A 2 3 5 , we can employ the procedure 1 3 5 introduced above. </p><p>1.</p><p> 1 1 2 ⋮ 1 0 0 ⋮ 2 3 5 0 1 0 . 1 3 5 ⋮ 0 0 1</p><p>1 1 2 ⋮ 1 0 0 (3)(3)(1) ⋮ (2)(2)2*(1) 0 1 1 2 1 0 0 2 3 ⋮ 1 0 1</p><p>1 1 2 ⋮ 1 0 0 (2)1*(2) ⋮ 0 1 1 2 1 0 0 2 3 ⋮ 1 0 1</p><p>3 1 0 1 ⋮ 3 1 0 (1)(1)(2) ⋮ (3)(3)2*(2) 0 1 1 2 1 0 0 0 1 ⋮ 3 2 1</p><p>1 0 0 ⋮ 0 1 1 (1)(1)(3) ⋮ (2)(2)(3) 0 1 0 5 3 1 0 0 1 ⋮ 3 2 1 </p><p>2. The inverse of A is </p><p> 0 1 1 5 3 1 . 3 2 1</p><p>Example:</p><p>1 1 1 Find the inverse of A 0 2 3 if it exists. 5 5 1</p><p>[solution:]</p><p>1. Form the augmented matrix 1 1 2 ⋮ 1 0 0 A | I 2 3 5 ⋮ 0 1 0 3 . 1 3 5 ⋮ 0 0 1 And the transformed matrix in reduced row echelon form is 1 0 0 ⋮ 13/8 1/ 2 1/8 ⋮ 0 1 0 15/ 8 1/ 2 3/ 8 0 0 1 ⋮ 5/ 4 0 1/ 4</p><p>2. The inverse of A is </p><p>4 13/8 1/ 2 1/8 15/8 1/ 2 3/8 . 5/ 4 0 1/ 4</p><p>Example:</p><p>1 2 3 Find the inverse of A 1 2 1 if it exists. 5 2 3</p><p>[solution:]</p><p>1. Form the augmented matrix 1 2 3 ⋮ 1 0 0 A | I 1 2 1 ⋮ 0 1 0 3 . 5 2 3 ⋮ 0 0 1 And the transformed matrix in reduced row echelon form is 1 0 1 ⋮ 1/ 2 1/ 2 0 ⋮ 0 1 1 1/ 4 1/ 4 0 0 0 0 ⋮ 2 3 1</p><p>2. A is singular!!</p><p>2. Using the adjoint adj(A) of a matrix:</p><p>As det(A) 0 , then</p><p>1 adj(A) A . det(A) Note: adj(A)A det(A)I n is always true.</p><p>5 Note: As det(A) 0 A is nonsingular.</p><p>3. Properties of The Inverse Matrix:</p><p>The inverse matrix of an n n nonsingular matrix A has the following important properties:</p><p>1 1. A1 A .</p><p>1 t 1. At A1 2. If A is symmetric, So is its inverse. 3. AB1 B1 A1 4. If C is an invertible matrix, then AC BC A B. CA CB A B . 1 5. As A I exists, then </p><p>I A A2 ⋯ An1 An I A I 1 A I 1 An I .</p><p>[proof of 2]</p><p> t t A1 At AA1 I t I similarly, </p><p> t t At A1 A1A I t I .</p><p>[proof of 3:]</p><p>By property 2, </p><p>6 t 1 A1 At A1 .</p><p>[proof of 4:]</p><p>1 1 1 1 1 B A AB B A AB B IB I . Similarly, 1 1 1 1 1 ABB A ABB A AIA I .</p><p>[proof of 5:]</p><p>Multiplied by the inverse of C, then ACC 1 AI A BCC 1 BI B . Similarly, C 1CA IA A C 1CB IB B .</p><p>[proof of 6:]</p><p>I A A2 ⋯ An1 A I A A2 ⋯ An I A A2 ⋯ An1 An I . Multiplied by A I 1 on both sides, we have </p><p>1 A A2 ⋯ An1 An I A I 1 . I A A2 ⋯ An1 A I 1 An I can be obtained by using similar procedure. </p><p>Example:</p><p>Prove that I AB1 I AI BA1 B . [proof:]</p><p>7 I AI BA1 BI AB I AB AI BA1 B AI BA1 BAB I AB AI BA1 I BA1 BAB I AB AI BA1 I BAB I AB AIB I AB AB I</p><p>Similar procedure can be used to obtain I ABI AI BA1 B I .</p><p>4. Left and Right Inverses:</p><p>Definition of left inverse: For a matrix A, LA I but AL I , with more than one such L. Then, the matrices L are called left inverse of A. </p><p>Definition of right inverse: For a matrix A, AR I but RA I , with more than one such R. Then, the matrices R are called left inverse of A. </p><p>Theorem:</p><p> r c A matrix Arc has left inverses only if r c .</p><p>[proof:]</p><p>We prove that a contradictory result can be obtained as r c and</p><p>8 Arc having a left inverse. For r c , let </p><p>Arc X rr Yr(cr) </p><p>Then, suppose</p><p> M rr Lcr N(cr)r is the left inverse of Arc . Then,</p><p> M rr Lcr Arc X rr Yr(cr) N(cr)r . MX MY Irr 0 Icc NX NY 0 I(cr)(cr) Thus, MX I, MY 0, NX 0, NY I.</p><p>Since MX I and both M and X are square matrices, then M X 1 . Therefore, MY X 1Y 0 multiplied by X XX 1Y Y X 0 0 . However, NY N0 0 I . </p><p>It is contradictory. Therefore, as r c , Arc has no left inverse.</p><p>9 Theorem:</p><p> r c A matrix Arc has left inverses only if r c .</p><p>10</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-