Definition of Inverse Matrix

Definition of Inverse Matrix

<p> Section 4 Inverse Matrix </p><p>1. Definition:</p><p>Definition of inverse matrix: An n  n matrix A is called nonsingular or invertible if there exists an n  n matrix B such that </p><p>, AB  BA  I n</p><p> n  n where I n is a identity matrix. The matrix B is called an inverse of A. If there exists no such matrix B, then A is called singular or noninvertible. is called a odd permutation. </p><p>Theorem: If A is an invertible matrix, then its inverse is unique. </p><p>[proof:] Suppose B and C are inverses of A. Then,</p><p>BA  CA  I n  B  BI n  B(AC)  (BA)C  I nC  C .</p><p>Note: Since the inverse of a nonsingular matrix A is unique, we denoted the inverse of A as A1 .</p><p>Note: If A is not a square matrix, then  there might be more than one matrix L such that LA  I (or AL  I) .  there might be some matrix U such that </p><p>1 UA  I but AU  I</p><p>Example:</p><p>Let </p><p> 1 1    A  1 0  .  3 1</p><p>Then,  there are infinite number of matrices L such that LA  I , for example 1 3 1 4 15 4 L    or L    . 2 5 1 7 25 6 1 3 1  As L    , 2 5 1</p><p> 3 8 2    LA  I but AL  1  3 1  0 .  1 4 2 </p><p>2. Computation of A1 :</p><p>1. Using Gauss-Jordan reduction:</p><p>The procedure for computing the inverse of a n  n matrix A:</p><p>1. Form the n  2n augmented matrix </p><p>2 a11 a12 ⋯ a1n ⋮ 1 0 ⋯ 0   a21 a22 ⋯ a2n ⋮ 0 1 ⋯ 0 A ⋮ I     n  ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮   an1 an2 ⋯ ann ⋮ 0 0 ⋯ 1 and transform the augmented matrix to the matrix C ⋮ D in reduced row echelon form via elementary row operations. </p><p>2. If 1 (a) C  I n , then A  D . 1 (b) C  I n , then A is singular and A does not exist. </p><p>Example:</p><p> 1 1  2   To find the inverse of A   2  3  5 , we can employ the procedure 1 3 5  introduced above. </p><p>1.</p><p> 1 1  2 ⋮ 1 0 0  ⋮   2  3  5 0 1 0 . 1 3 5 ⋮ 0 0 1</p><p>1 1  2 ⋮ 1 0 0 (3)(3)(1)   ⋮ (2)(2)2*(1)  0 1 1  2 1 0 0 2 3 ⋮ 1 0 1</p><p>1 1  2 ⋮ 1 0 0   (2)1*(2) ⋮  0 1 1 2 1 0 0 2 3 ⋮ 1 0 1</p><p>3 1 0 1 ⋮ 3 1 0 (1)(1)(2)   ⋮ (3)(3)2*(2)  0 1 1 2 1 0 0 0 1 ⋮  3 2 1</p><p>1 0 0 ⋮ 0 1 1  (1)(1)(3)   ⋮ (2)(2)(3) 0 1 0 5  3 1 0 0 1 ⋮  3 2 1 </p><p>2. The inverse of A is </p><p> 0 1 1    5  3 1 .  3 2 1</p><p>Example:</p><p>1 1 1   Find the inverse of A  0 2 3 if it exists. 5 5 1</p><p>[solution:]</p><p>1. Form the augmented matrix  1 1  2 ⋮ 1 0 0 A | I   2  3  5 ⋮ 0 1 0  3    . 1 3 5 ⋮ 0 0 1 And the transformed matrix in reduced row echelon form is 1 0 0 ⋮ 13/8 1/ 2 1/8  ⋮  0 1 0 15/ 8 1/ 2 3/ 8  0 0 1 ⋮ 5/ 4 0 1/ 4</p><p>2. The inverse of A is </p><p>4  13/8 1/ 2 1/8   15/8 1/ 2 3/8  .  5/ 4 0 1/ 4</p><p>Example:</p><p>1 2  3   Find the inverse of A  1  2 1  if it exists. 5  2  3</p><p>[solution:]</p><p>1. Form the augmented matrix 1 2  3 ⋮ 1 0 0 A | I  1  2 1 ⋮ 0 1 0  3    . 5  2  3 ⋮ 0 0 1 And the transformed matrix in reduced row echelon form is 1 0 1 ⋮ 1/ 2 1/ 2 0  ⋮  0 1 1 1/ 4 1/ 4 0 0 0 0 ⋮  2  3 1</p><p>2. A is singular!!</p><p>2. Using the adjoint adj(A) of a matrix:</p><p>As det(A)  0 , then</p><p>1 adj(A) A  . det(A) Note: adj(A)A  det(A)I n is always true.</p><p>5 Note: As det(A)  0  A is nonsingular.</p><p>3. Properties of The Inverse Matrix:</p><p>The inverse matrix of an n  n nonsingular matrix A has the following important properties:</p><p>1 1. A1   A .</p><p>1 t 1. At   A1  2. If A is symmetric, So is its inverse. 3. AB1  B1 A1 4. If C is an invertible matrix, then  AC  BC  A  B.  CA  CB  A  B . 1 5. As A  I  exists, then </p><p>I  A  A2 ⋯  An1  An  I A  I 1  A  I 1 An  I .</p><p>[proof of 2]</p><p> t t A1  At  AA1   I t  I similarly, </p><p> t t At A1   A1A  I t  I .</p><p>[proof of 3:]</p><p>By property 2, </p><p>6 t 1 A1   At   A1 .</p><p>[proof of 4:]</p><p>1 1 1 1 1 B A AB  B A AB  B IB  I . Similarly, 1 1 1 1 1 ABB A  ABB A  AIA  I .</p><p>[proof of 5:]</p><p>Multiplied by the inverse of C, then ACC 1  AI  A  BCC 1  BI  B . Similarly, C 1CA  IA  A  C 1CB  IB  B .</p><p>[proof of 6:]</p><p>I  A  A2 ⋯ An1 A  I   A  A2 ⋯ An  I  A  A2 ⋯ An1   An  I . Multiplied by A  I 1 on both sides, we have </p><p>1 A  A2  ⋯ An1  An  I A  I 1 . I  A  A2 ⋯ An1  A  I 1 An  I  can be obtained by using similar procedure. </p><p>Example:</p><p>Prove that I  AB1  I  AI  BA1 B . [proof:]</p><p>7 I  AI  BA1 BI  AB  I  AB  AI  BA1 B  AI  BA1 BAB  I  AB  AI  BA1  I  BA1 BAB  I  AB  AI  BA1 I  BAB  I  AB  AIB  I  AB  AB  I</p><p>Similar procedure can be used to obtain I  ABI  AI  BA1 B I .</p><p>4. Left and Right Inverses:</p><p>Definition of left inverse: For a matrix A, LA  I but AL  I , with more than one such L. Then, the matrices L are called left inverse of A. </p><p>Definition of right inverse: For a matrix A, AR  I but RA  I , with more than one such R. Then, the matrices R are called left inverse of A. </p><p>Theorem:</p><p> r  c A matrix Arc has left inverses only if r  c .</p><p>[proof:]</p><p>We prove that a contradictory result can be obtained as r  c and</p><p>8 Arc having a left inverse. For r  c , let </p><p>Arc  X rr Yr(cr) </p><p>Then, suppose</p><p> M rr  Lcr    N(cr)r  is the left inverse of Arc . Then,</p><p> M rr  Lcr Arc   X rr Yr(cr)  N(cr)r  . MX MY  Irr 0      Icc     NX NY   0 I(cr)(cr)  Thus, MX  I, MY  0, NX  0, NY  I.</p><p>Since MX  I and both M and X are square matrices, then M  X 1 . Therefore, MY  X 1Y  0 multiplied by X  XX 1Y  Y  X 0  0 . However, NY  N0  0  I . </p><p>It is contradictory. Therefore, as r  c , Arc has no left inverse.</p><p>9 Theorem:</p><p> r  c A matrix Arc has left inverses only if r  c .</p><p>10</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us