<p> 1</p><p>CHAPTER 10: TWO-SAMPLE TESTS AND ONE-WAY ANOVA 2</p><p>CRITICAL VALUE METHOD FOR DETERMINING SIGNIFICANCE</p><p>Critical Value Method Critical Value Method Two-Tailed Test One-Tailed Test (Upper)</p><p>Example Example tCRITICAL values = -2.06 and +2.06 tCRITICAL value = +2.06 tSTAT = -3.0 [Greater than 2.06, so Reject Null] tSTAT = -3.0 [Reject Null] tSTAT = -.75 [Between Crit values; Do Not Reject] tSTAT = -.75 [Do Not Reject Null] tSTAT = 2.0 [Between crit values; Do Not Reject] tSTAT = 2.0 [Do Not Reject Null] tSTAT = -3.0 [Less than -2.06, so Reject Null] tSTAT = -3.0 [Do Not Reject Null]</p><p>P-VALUE METHOD FOR DETERMINING SIGNIFICANCE 2-Value Method 2-Value Method Two-Tailed Test One-Tailed Test (Upper)</p><p>αCRITICAL = 0.05 αCRITICAL = 0.05 If p-value is low (compared to α), the null must go. If p-value is low (compared to α), the null must go. .01 < .05 [Reject the null hypothesis] .01 < .05 [Reject the null hypothesis] .06 > .05 [ Do Not Reject the null hypothesis] .06 > .05 [ Do Not Reject the null hypothesis] .65 > .05 [Do Not Reject the null hypothesis] .65 > .05 [Do Not Reject the null hypothesis</p><p>NOTE: BOTH METHODS WILL LEAD TO THE SAME STATISTICAL CHOICE 3</p><p>EXCEL DATA ANALYSIS 4</p><p>COMPARING TWO SAMPLE MEANS WITH EQUAL VARIANCE (δ2)</p><p>H0: µTAKWA = µRONDO</p><p>H1: µTAKWA ǂ µRONDO 5</p><p>ABS(t value) = 1.1825 < 2.08593; Do not reject p-Value = .0.251361 > .05; Do not reject 6</p><p>COMPARING TWO SAMPLE MEANS WITH EQUAL VARIANCE (δ2): ONE-TAILED TEST</p><p>H0: µTAKWA >= µRONDO</p><p>H1: µTAKWA < µRONDO</p><p>ABS(tSTAT) = 2.4004 > 1.724718; Do not reject p-Value = .0.013113 > .05; do not reject 7</p><p>COMPARING TWO SAMPLE MEANS WITH UNEQUAL VARIANCE (Δ2)</p><p>H0: µTAKWA = µRONDO</p><p>H1: µTAKWA ǂ µRONDO 8</p><p>ABS(tSTAT) = 1.18125 > 2.085963; Reject the null. p-Value = .0.013113 < .05; Reject the null. 9</p><p>PAIRED T TESTS</p><p>H0: µA = µB</p><p>H1: µA ǂ µB 10</p><p>ABS(tSTAT) = 6.67799 > 2.085963; Reject the null. p-Value = 9.08/100000 < .05; Reject the null. 11</p><p>COMPARING THE PROPORTIONS OF TWO INDEPENDENT POPULATIONS THE SITUATION</p><p>Are you likely to use this hotel again?</p><p>Beachcomber: 163/227 guests said “Yes.” p1 = 0.7181</p><p>Windsurfer: 154/262 guests said “Yes.” p2 = 0.5878 HYPOTHESES</p><p>H0: π1 = π2</p><p>H1: π1 ǂ π2</p><p>α = 0.05, so ZCRITICAL = ±1.96 TEST STATISTIC</p><p>Set (π1-π2) to 0</p><p>IS THE TEST STATISTIC GREATER THAN Z CRITICAL? 12</p><p>F-TEST FOR THE DIFFERENCE BETWEEN TWO VARIANCES 2 2 H0: δ TAKWA = δ RONDO 2 2 H1: δ TAKWA ǂ δ RONDO 13</p><p>F value = 1.15 < 2.97823702; Do not reject p-Value = .41470805 > .05; do not reject 14</p><p>SINGLE-FACTOR ANALYSIS OF VARIANCE</p><p>H0: µTAKWA = µRONDO = µRONDO</p><p>H1: At least one of the population means is different.</p><p>ABS(F) = 18.11688 > 3.31583; Reject the null. p-Value = 6.93/1000000 < .05; Reject the null.</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages14 Page
-
File Size-