
<p>An Update on Google’s Quantum Computing Initiative </p><p>January 31, 2019 <a href="mailto:[email protected]" target="_blank">[email protected] </a></p><p>Copyright 2018 Google LLC </p><p>Our Brains are Wired for Newtonian Physics </p><p>Brains that recognize and anticipate behaviors of Heat, Light, Momentum, Gravity, etc. have an Evolutionary Advantage. </p><p><strong>Quantum phenomena contradict our intuition. </strong></p><p>Quantum Phenomena Contradict Intuition </p><p>Interference, “Erasure”, etc. </p><p>0</p><p>(<sub style="top: 0.2048em;">1</sub>) </p><p>Quantum Theory Explains Cleanly… </p><p>...but the Math looks Strange </p><p>1</p><p><em>i</em></p><p>1<br>√2 <br>1<br>√2 </p><p>1 <em>i i </em>1 </p><p>How can a Particle be On Two Paths at the Same Time? </p><p>1<br>1</p><p><em>i</em></p><p>√2 </p><p>P<sub style="top: 0.3125em;">u </sub></p><p>1<br>√2 </p><p>1 <em>i i </em>1 </p><p>(<sub style="top: 0.1518em;">P</sub>) </p><p>r</p><p>Copyright 2017-2019 Google LLC </p><p>Superposed States, Superposed Information </p><p>l0〉 </p><p><strong>( |0〉+|1〉 )</strong><sup style="top: -0.5625em;"><strong>2 </strong></sup><br><strong>= |00〉+|01〉+|10〉+|11〉 </strong><br><strong>|0〉 + |1〉 </strong></p><p>l1〉 </p><p>Copyright 2017-2019 Google LLC </p><p>01 </p><p>Macroscopic QM Enables New Technology </p><p>Control of single quantum systems, to quantum computers </p><p></p><ul style="display: flex;"><li style="flex:1">1 nm </li><li style="flex:1">1 μm </li><li style="flex:1">1 mm </li></ul><p></p><p><strong>H atom wavefunctions: </strong></p><p>Problem: Light is 1000x larger </p><p><strong>Large “atom” has room for complex control </strong></p><p>Copyright 2017-2019 Google LLC </p><p>Xmon: Direct coupling + Tunable Transmons </p><p>● Direct qubit-qubit capacitive coupling ● Turn interaction on and off with frequency </p><p><strong>g</strong></p><p>control </p><p></p><ul style="display: flex;"><li style="flex:1">“OFF” </li><li style="flex:1">“ON” </li></ul><p></p><p>f<sub style="top: 0.5625em;">10 </sub>f<sub style="top: 0.5625em;">21 </sub></p><p>Δ</p><p>η</p><p>Coupling g </p><p>SQUID </p><ul style="display: flex;"><li style="flex:1">Qubit </li><li style="flex:1">Qubit </li></ul><p></p><p>Coupling rate Ω<sub style="top: 0.5625em;">zz </sub>≈ 4ηg<sup style="top: -0.5625em;">2 </sup>/ Δ<sup style="top: -0.5625em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">Qubit A </li><li style="flex:1">Qubit B </li></ul><p></p><p>Copyright 2017-2019 Google LLC </p><p>Logic Built from Universal Gates </p><p></p><ul style="display: flex;"><li style="flex:1">Classical circuit: </li><li style="flex:1">Quantum circuit: </li></ul><p></p><p>1 qubit rotation 2 qubit CNOT No copy <br>1 bit NOT 2 bit AND Wiring fan-out <br>1 Input Gates <br>2 Input Gates </p><p>(space+time ) </p><p>time </p><p>Copyright 2017-2019 Google LLC </p><p>Execution of a Quantum Simulation </p><p>arXiv:1512.06860 </p><p>Copyright 2017-2019 Google LLC </p><p>Quantum Simulation Results, H<sub style="top: 0.875em;">2 </sub>Molecule </p><p><strong>Control </strong></p><p><strong>Qubits </strong></p><p>arXiv:1512.06860 </p><p>Copyright 2017-2019 Google LLC <br>Office of the CTO </p><p>Space-Time Volume of a Quantum Gate Computation </p><p>2 qubit gate fidelity = 99.5% </p><p>Uncorrected Gate “Circuits” Limited by Fidelity of Operations and Decoherence Times </p><p>Fidelity is the Third Dimension </p><p>Copyright 2017-2019 Google LLC </p><p>Gate Depth </p><p>Goals for Near-Term Scaling </p><p>10<sup style="top: -0.5625em;">-2 </sup></p><p>Error correction threshold </p><p>∗</p><p>“Quantum Supremacy” </p><p>10<sup style="top: -0.5625em;">-3 </sup>10<sup style="top: -0.5625em;">-4 </sup></p><p>Useful error corrected QC </p><p>Near-term applications </p><p>Classically simulatable </p><p>✔</p><p>✘</p><p><strong>?</strong></p><p></p><ul style="display: flex;"><li style="flex:1">10<sup style="top: -0.5625em;">0 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">1 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">2 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">3 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">4 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">5 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">6 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">7 </sup></li><li style="flex:1">10<sup style="top: -0.5625em;">8 </sup></li></ul><p></p><p><strong>Number of Qubits </strong></p><p>Copyright 2017-2019 Google LLC </p><p><em>Which computer is better at landing samples the “Bright Spots” ? </em></p><p>Quantum “Supremacy” </p><p>Do what classical CPUs Cannot do: </p><p>2<sup style="top: -0.4375em;">n </sup></p><p>index k </p><p>0</p><p>Ideal distribution </p><p>Multiple errors </p><p>>50 Qubits, >40 Steps </p><p>2<sup style="top: -0.4375em;">n </sup></p><p>ordered index k </p><p>0</p><p>Copyright 2017-2019 Google LLC </p><p>Toward Universal Fault-Tolerant QC </p><p>● Qubit error rates ~10<sup style="top: -0.5625em;">-2</sup>-10<sup style="top: -0.5625em;">-3 </sup>per operation </p><p>● Universal QC requires ~10<sup style="top: -0.5625em;">-10 </sup>● Error correction: <br>○ Low error logical qubit made with many physical qubits <br>● Surface code error correction: <br>○ 2D array of qubits (n.n. coupling) ○ Modest error rates (1% threshold, <br>0.1% target) <br><em>○ </em>Useful at 10<sup style="top: -0.5625em;">6 </sup>physical qubits </p><p>Copyright 2017-2019 Google LLC </p><p>9 Qubit: Good performance, Limited Scaling </p><p>9 qubit device has good performance <br>● Err<sub style="top: 0.5em;">CZ </sub>down to 0.6% ● Err<sub style="top: 0.5em;">SQ </sub>< 0.1% ● Err<sub style="top: 0.5em;">RO </sub>= 1% Limited to 1D connectivity (planar geometry) </p><p>Scale-up strategy: move qubits, control to different planes </p><p>Copyright 2017-2019 Google LLC </p><p>Bump-Bond Architecture </p><p>● Bond together two separate chips <br>○ Qubits → “Chip” </p><p>“Chip” bumps </p><p>○ Control → “Carrier” </p><p>“Carrier” </p><p>● Superconducting interconnect ● Use lossless vacuum as dielectric </p><p>In TiN Al </p><p>30 μm </p><p>Copyright 2017-2019 Google LLC </p><p>Qubits (chip) </p><p>Control (substrate) </p><p>Scaling to 2D </p><p>Design must be “tileable” (control fits in qubit footprint) <br>● Readout resonator ● XY coupler ● SQUID coupler </p><p>Need to shield qubits from interior wire routing <br>● Small coupling to 50Ω line will decohere qubit </p><p>Copyright 2017-2019 Google LLC </p><p>“Foxtail” 22 Qubit Device </p><p>“Chip” <br>● Qubits </p><p>“Carrier” <br>Readout XY control Z control <br>●●●</p><p>Copyright 2017-2019 Google LLC </p><p>2D Unit Cell </p><p>● Diagonal for surface code: all “measure” qubits on same line <br>● Condense footprint across 2 chips ● Introduce shielded wiring between qubits ● Tile unit cell for 2D array Unit cell: Condensed, diagonal linear chain </p><p>Readout line </p><p>RO XYZ <br>RO XYZ <br>RO XYZ </p><ul style="display: flex;"><li style="flex:1">RO </li><li style="flex:1">RO </li></ul><p>XYZ <br>RO XYZ </p><p>rotate </p><p>XYZ </p><p>Unit cell designed for surface code </p><p>Copyright 2017-2019 Google LLC </p><p>“Bristlecone” Architecture </p><p>Tile <br>12 unit cells of 6 qubits = 72 qubits </p><p>Tile for a 2D grid of n.n. coupled qubits <br>Bonus: Looks like a pine cone! </p><p>Copyright 2017-2019 Google LLC </p><p>Photo: Erik Lucero </p><p>“72 qubits cold in fridge” </p><p>Copyright 2017-2019 Google LLC </p><p>Early Quantum Computing Applications </p><p>Quantum <br>Numerical </p><p>Simulation <br>Optimization </p><p>Copyright 2017-2019 Google LLC </p><p><em>C’est quoi ce Cirq? </em></p><p>Copyright 2017-2019 Google LLC </p><p>Cloud Quantum Computing Workflow </p><p>Application Frameworks OpenFermion (chemistry) IsingFlow (optimization) TensorFlow (ML) <br>Quantum Hardware </p><p>results </p><p>quantum hardware language </p><p>qhl qhl </p><p>Quantum Engine results <br>Python framework for writing quantum programs <br>Quantum </p><p>Simulator </p><p>results </p><p>Programs Jobs Results </p><p>Copyright 2017-2019 Google LLC </p><p>Is this a good quantum circuit? </p><p>CZ a b CZ b c CZ c d CZ d e CZ e f CZ f g CZ g h CZ h i </p><p>Copyright 2017-2019 Google LLC </p><p>Is this a good quantum circuit? </p><p>abcdefghi</p><p>CZ a b CZ b c CZ c d CZ d e CZ e f CZ f g CZ g h CZ h i </p><p><strong>No: large depth </strong></p><p>Copyright 2017-2019 Google LLC </p><p>Is this a good quantum circuit? Attempt #2 </p><p>CZ a b CZ c d CZ e f CZ g h </p><p>CZ b c CZ d e CZ f g CZ h i </p><p>Copyright 2017-2019 Google LLC </p><p>Is this a good quantum circuit? Attempt #2 </p><p>abcdefghi</p><p>CZ a b CZ c d CZ e f CZ g h </p><p>CZ b c CZ d e CZ f g CZ h i </p><p>Copyright 2017-2019 Google LLC </p><p>Is this a good quantum circuit? Attempt #2 </p><p>abcdefghi</p><p>CZ a b CZ c d CZ e f CZ g h </p><p>adgbehcf</p><p>CZ b c CZ d e CZ f g CZ h i </p><p>i</p><p>No: Does Not Map to Physical Topology </p><p>Copyright 2017-2019 Google LLC </p><p>Is this a good quantum circuit? Attempt #3 </p><p>CZ a b CZ c f CZ e d CZ g h </p><p>CZ b c CZ f e CZ d g CZ h i </p><p>Copyright 2017-2019 Google LLC </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages46 Page
-
File Size-