Section 7.2 Part 1 Means and Variances of Random Variables

Section 7.2 Part 1 Means and Variances of Random Variables

<p> Section 7.2 Part 1 – Means and Variances of Random Variables</p><p>Means and Variances of Random Variables</p><p> Probability is the mathematical language that describes the long-run regular behavior of random phenomena.</p><p> The probability distribution of a random variable is an idealized relative frequency distribution.</p><p> o See example 7.5 on p.407</p><p>Probability distribution of X:</p><p>Payoff X: $0 $500</p><p>Probability: 0.999 0.001</p><p>Mean of the random variable X is found by:</p><p>In other words, you are expected to lose $0.50 per ticket if many tickets are purchased over time.</p><p> The mean, ____, of a ______is their ______.</p><p> The mean of a______is also a ______, but </p><p> with an essential change to take into account the fact that ______need to be ______.</p><p>Mean of a Discrete Random Variable</p><p> Suppose that X is a discrete random variable whose distribution is </p><p>Value of X: x1 , x2 ,x3 , …. xk</p><p> probability: p1 , p2 , p3 , ….. pk</p><p> To find the mean of X, multiply each possible value by its probability, then add all products; = x1 p1 + x2 p2+ …….xk pk =∑xi pi Mean and Expected Value</p><p> The mean of a probability distribution describes the long-run average outcome. </p><p> You will often find the mean of a random variable X called expected value of X.</p><p> The common symbol _____, the Greek letter mu, is used to represent the mean of a probability distribution (expected value).</p><p> Some other common notations include:</p><p> (this is the most common)</p><p></p><p></p><p>The Variance of Random Variable</p><p> The mean is a measure of the center of a distribution. </p><p> The variance and the standard deviation are the measures of ______the choice of </p><p>______to measure center.</p><p> Recall from chapter 2 that the variance of a data set is written as ______and it represents an average of the squared deviation from the mean.</p><p> To distinguish between the variance of a data set and the variance of a random variable X, we write the variance of a random variable X as </p><p>Definition:</p><p>Suppose that X is a discrete random variable whose probability distribution is</p><p>Value: x1 x2 x3 …</p><p>Probability: p1 p2 p3 …</p><p> and that µX is the mean of X. The variance of X is</p><p>The standard deviation ______of X is the ______Example 7.7 – Selling Aircraft Parts</p><p>Gain Communications sells aircraft communications units to both the military and the civilian markets. Next year’s sales depend on market conditions that cannot be predicted exactly. Gain follows the modern practice of using probability estimates of sales. The military division estimates its sales as follows: </p><p>Units sold: 1000 3000 5000 10,000</p><p>Probability: 0.1 0.3 0.4 0.2</p><p>Calculate the mean and variance of X </p><p>See p.411 to check your answers</p><p>Statistical Estimation and the Law of Large Numbers</p><p> To estimate μ, we choose a SRS of young women and ______the unknown</p><p>______.</p><p> Statistics obtained from ______are ______because their </p><p> values would ______.</p><p> It seems reasonable to use ______to estimate ______. </p><p> A SRS should fairly represent the ______, so the mean of the sample should be </p><p>______μ of the population. </p><p> Of course, we don’t expect to be exactly equal to μ, and realize that if we choose another SRS, the luck of the draw will probably produce a different .</p><p>Law of Large Numbers</p><p> If we keep on adding observations to our random sample, the statistic is guaranteed to get </p><p>______to the ______and then ______.</p><p> This remarkable fact is called the law of large numbers.</p><p> The law of large numbers states the following:</p><p> Draw independent observations at random from any population with finite mean μ.</p><p> Decide how ______you would like to estimate μ. </p><p> As the number of observations draw ______, the mean of the observed values eventually </p><p>______of the population ______and then stays that close.  See example 7.8 on p.414 The “Law of Small Numbers”</p><p> Both the rules of probability and the law of large numbers describe the regular behavior of chance phenomena in the long run. </p><p> Psychologists have discovered most people believe in an ______“law of small numbers”</p><p> That is, we expect even short sequences of random events to show the kind of average behavior that in fact appears only in the long run.</p><p>How Large is a Large Number?</p><p> The law of large numbers says that the actual mean outcome of many trials gets close to the distribution mean μ as more trials are made. </p><p> It doesn’t say how many trials are needed to guarantee a mean outcome close to μ.</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us