Answer to Practice Problem 2.8 (Page 12 of Handout #1)

Answer to Practice Problem 2.8 (Page 12 of Handout #1)

<p>ANSWER TO PRACTICE PROBLEM 2.8 (PAGE 12 OF HANDOUT #1)</p><p>A S1</p><p>S2 S5 B S3 S4</p><p>C S6</p><p>S7</p><p>Partition A U B U C into the seven disjoint sets. What follows is not fully rigorous but intuitive from the Venn Diagram. </p><p>A U B U C = S1 + S2 + S3 + S4 +S5 + S6 + S7. A = S1 + S2 + S3 + S4. B = S2 + S4 + S5 + S6. C = S3 + S4 + S6 + S7. A + B + C = (S1 + S2 + S3 + S4)+( S2 + S4 + S5 + S6)+( S3 + S4 + S6 + S7) Group A U B U C terms together and add what is left over. We get, A + B + C = (A U B U C) + (S2+S4)+(S3+S4)+S6. S2+S4 = A ∩ B. S3+S4 = A ∩ C. Hence, A + B + C = (A U B U C) + (A ∩ B) + (A ∩ C) + S6. Now add and subtract S4 from the right hand side. Then we have, A + B + C = (A U B U C) + (A ∩ B) + (A ∩ C) + S6 + S4 – S4. S6 + S4 = B ∩ C and S4 = A∩B∩C. Therefore, A + B + C = (A U B U C) + (A ∩ B) + (A ∩ C) + (B ∩ C) – (A∩B∩C). Thus, P(A)+P(B)+P(C) = P(A U B U C) + P(A ∩ B) + P(A ∩ C) + P(B ∩ C) – P(A∩B∩C). By rearranging terms, we get the desired result that P(A U B U C) = P(A)+P(B)+P(C) – P(A ∩ B) – P(A ∩ C) – P(B ∩ C) + P(A∩B∩C).</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us